
slide 1
gaius

Lecture 1: Setting the scene and overview

in this module we will be usingC++ as the programming language and
we will be covering algorithms and data structures

split into two terms, this term we will be covering
C++, pointers, dynamic memory
lists, stacks, queues, trees, sets, graphs

next term higher level algorithms are covered



slide 2
gaius

Example code

will be placed on git hub and code will be formatted according to the
GNU coding standard

〈https://github.com/gaiusm/examples〉

to obtain all these examples, open up a terminal and type:

$ git clone https://github.com/gaiusm/examples
$ cd examples/c++



slide 3
gaius

Data structures

will be covered and implemented in C++

will be adopting a functional programming approach (where it is
practical)

using Dijsktra’s pre and post conditions where possible
recursion will be exploited to derive simple almost provable
solutions



slide 4
gaius

Example: Fibonacci sequence

is a sequence of numbers: 1, 1, 2, 3, 5, 8, 13, 21, etc
the next value is the sum of the previous two

could express this in pseudo code as:

if n<=2 then fib(n) = 1
else fib(n) = fib(n-1) + fib(n-2)



slide 5
gaius

C++ implementation of the Fibonacci function

c++/fib/fib.cc

#include <cstdio>

static const int terms = 12;

/*
* fibonacci - generate nth term in the classical sequence.
* precondition : n > 0
* postcondition: returns the nth term
*/

static int fibonacci (int n)
{
if (n <= 2)

return 1;
else

return fibonacci (n-1) + fibonacci (n-2);
}



slide 6
gaius

C++ implementation of the Fibonacci function

c++/fib/fib.cc

/*
* main - first user function executed.
* precondition : none.
* postcondition: returns 0 (silently).
*/

int main (int argc, char *argv[])
{
printf ("Fibonacci numbers for the first %d are: ", terms);
for (int i = 1; i <= terms; i++)

printf ("%d ", fibonacci (i));
printf ("\n");

}



slide 7
gaius

Implementation notes

notice that we can useprintf within C++

we can also declareint i within thefor loop

declareterm as aconst int. static means local to this file only.

the rest looks like C



slide 8
gaius

Compile the source file

compile the single source file into an executable

$ g++ -O0 -g -Wall fib.cpp

run the executable

$ gdb ./a.out
(gdb) run
(gdb) quit

and again usingvalgrind

$ valgrind ./a.out



slide 9
gaius

Functional coding style

notice the functional coding use of recursion

a criticism of this style is that it is slow

however, this is not always true as compiler technology will often
convert a recursive solution into an iterative one

particularly tail recursive algorithms and small functions
many of the algorithms we will look at during this term fit this
pattern



slide 10
gaius

Example performance test

c++/fib/fibspeed.cc

#include <cstdio>

static const int terms = 45;

/*
* fibonacci - generate nth term in the classical sequence.
* precondition : n > 0
* postcondition: returns the nth term
*/

static int fibonacci (int n)
{
if (n <= 2)

return 1;
else

return fibonacci (n-1) + fibonacci (n-2);
}



slide 11
gaius

Example performance test

c++/fib/fibspeed.cc

/*
* main - first user function executed.
* precondition : none.
* postcondition: returns 0 (silently).
*/

int main (int argc, char *argv[])
{
printf ("Fibonacci value for the first %d are: ", terms);
printf ("... %d\n", fibonacci (terms));

}



slide 12
gaius

After compiling and testing our program

$ g++ -O0 -Wall -g fibspeed.cpp
$ time ./a.out
Fibonacci value for the first 45 are: ... 1134903170

real 0m15.466s
user 0m15.461s
sys 0m0.000s

see if we can make it run faster

$ g++ -O2 -Wall -g fibspeed.cpp



slide 13
gaius

After compiling and testing our program

check runtime speed

$ time ./a.out
Fibonacci value for the first 45 are: ... 1134903170

real 0m3.143s
user 0m3.140s
sys 0m0.000s

much better, but still too slow, why?



slide 14
gaius

After compiling and testing our program

examine the code generated by the compiler

$ g++ -Wall -S -fverbose-asm -g -O2 fibspeed.cpp -o fibspeed.s
$ as -alhnd fibspeed.s > fibspeed.lst

open upfibspeed.lst and search forcall

which areas of code usecalls?



slide 15
gaius

After compiling and testing our program

we observe that the compiler has removed one recursive call to
fibonacci (n-2) but not the other call tofibonacci (n-1) in
the sequence

c++/fib/fibspeed.cc

static int fibonacci (int n)
{

if (n <= 2)
return 1;

else
return fibonacci (n-1) + fibonacci (n-2);

}



slide 16
gaius

Tutorial

try compiling the fibonacci algorithm using the-O3 option, what
difference does it make?

how manycalls are made?

rewrite the fibonacci algorithm to use at most one call to itself and see
if the compiler will transform it into a purely iterative solution

or rewrite it to use no calls at all



slide 17
gaius

Consider the function Sum

x =
n

i=1
Σ i

pseudo code

sum (lower, upper)
if lower <= upper then return lower
else return lower + sum (lower+1, upper)



slide 18
gaius

Consider the function Sum

c++/sum/sum.cc



#include <cstdio>

static const int low = 1;
static const int high = 1000000;

/*
* sum - generate the sum of terms lower..upper.
* precondition : lower <= upper.
* postcondition: returns the sum of lower..upper.
*/

static int sum (int lower, int upper)
{
if (lower == upper)

return lower;
else

return lower + sum (lower + 1, upper);
}



slide 20
gaius

Consider the function Sum

c++/sum/sum.cc

/*
* main - first user function executed.
* precondition : none.
* postcondition: returns 0 (silently).
*/

int main (int argc, char *argv[])
{
printf ("Sum of numbers from %d..%d is: ", low, high);
printf ("%d\n", sum (low, high));

}



slide 21
gaius

Consider the function Sum

compile and debug this via:

$ g++ -g -O0 sum.cpp
$ gdb ./a.out
(gdb) run
segmentation violation
(gdb) quit

the stack is being exceeded, when processing the recursive calls



slide 22
gaius

Consider the function Sum

let us try compiling with-O3

$ g++ -g -O3 sum.cpp
$ gdb ./a.out
(gdb) run
(gdb) quit
Sum of numbers from 1..1000000 is: 1784293664



slide 23
gaius

Consider the function Sum

check the assembly language as before

$ g++ -Wall -S -fverbose-asm -g -O3 sum.cpp -o sum.s
$ as -alhnd sum.s > sum.lst

observesum.lst and see the compiler has transformed the recursive
algorithm into a very tight iterative loop!



slide 24
gaius

Conclusion

we have seen that a functional approach can be adopted

sometimes the compiler is able to transform a recursive algorithm into
an iterative solution (when tail recursion is used)

other times it cannot - we need to be aware of these limitations and
profile code accordingly


