
slide 1
gaius

Programming Proverbs

4. ‘‘Be aware of other approaches.’’

Henry F. Ledgard, ‘‘Programming Proverbs: Principles of Good
Programming with Numerous Examples to Improve Programming
Style and Proficiency’’, (Hayden Computer Programming Series),
Hayden Book Company, 1st edition, ISBN-13: 978-0810455221,
December 1975.

slide 2
gaius

Structs and arrays

recall that astruct allows us to create aggregate or compound data
types

useful to store related data types in one container
we can also initialise these together

slide 3
gaius

struct example: student record

using System;

public struct student
{

public int enrolment;
public string name;
public int year;

}

slide 4
gaius

struct example: student record

public class test
{

public static void Main ()
{

student s;

s.name = "Fred Bloggs";
s.enrolment = 12345678;
s.year = 1;

Console.WriteLine ("student {0} has enrolment number {1} \
and is in the {2} year", s.name, s.enrolment, s.year);
}

}

slide 5
gaius

struct example: student record

when run we get the following output:

student Fred Bloggs has enrolment number 12345678 and is in the 1 year

using thestruct keeps related data together

consider the worse alternative

slide 6
gaius

struct example: student record

public class test
{

public static void Main ()
{

int enrolment;
string name;
int year;

name = "Fred Bloggs";
enrolment = 12345678;
year = 1;

Console.WriteLine ("student {0} has enrolment number {1} \
and is in the {2} year", name, enrolment, year);
}

which has some redeeming feature (no need fors.fieldname) but it is
less extensible

for example suppose we want to implement a list of students

slide 7
gaius

An array of structs

class test
{

static void Main ()
{

const int nStudents = 40;
student[] all = new student [nStudents];

for (int i = 0; i < nStudents; i++)
{

Console.WriteLine ("Please enter name, enrolment and year");

all[i].enrolment = Int32.Parse (Console.ReadLine ());
all[i].name = Console.ReadLine ();
all[i].year = Console.ReadLine ();

}
}

}

slide 8
gaius

Properties of structs

structs can be assigned

structs are passed byvalue, just like fundamental data types

consider this example:

slide 9
gaius

Properties of structs

using System;

public struct student
{

public int enrolment;
public string name;
public int year;

}

slide 10
gaius

Properties of structs

public class test
{

public static student tester (student s)
{

if (s.name == ".") {
s.name = "Joe Smith";
s.enrolment = 11111111;
s.year = 3;

}
return s;

}

slide 11
gaius

Properties of structs

public static void Main ()
{

student s;

s.name = ".";
s.enrolment = 12345678;
s.year = 1;
s = tester (s);

Console.WriteLine ("student {0} has enrolment number {1} \
and is in the {2} year", s.name, s.enrolment, s.year);
}

}

slide 12
gaius

Properties of structs

notice that we can passstruct as a value parameter,s, is copied into
tester

changings, inside functiontester only affects the local copy of s
(the parameter)

the codereturns this copy which is then assigned to the variables in
functionMains scope

slide 13
gaius

Properties of structs

now consider this example:

using System;

public struct student
{

public int enrolment;
public string name;
public int year;

}

slide 14
gaius

Properties of structs

public class test
{

public static student tester (student s)
{

if (s.name == ".") {
s.name = "Joe Smith";
s.enrolment = 11111111;
s.year = 3;

}
return s;

}

slide 15
gaius

Properties of structs

public static void Main ()
{

student s, t;

s.name = ".";
s.enrolment = 12345678;
s.year = 1;
t = tester (s);

Console.WriteLine ("student {0} has enrolment number {1} \
and is in the {2} year", s.name, s.enrolment, s.year);

Console.WriteLine ("student {0} has enrolment number {1} \
and is in the {2} year", t.name, t.enrolment, t.year);
}

}

slide 16
gaius

Properties of structs

notice the values,s, andt, inside functionMain

here is the output of this program when run:

student . has enrolment number 12345678 and is in the 1 year
student Joe Smith has enrolment number 11111111 and is in the 3 year

slide 17
gaius

Properties of structs

structs can be thought of as a fundamental data type
when performing assignment
being passed as a parameter
returned from a function
used as another type in anarray or struct

as they are passed by value

slide 18
gaius

Properties of structs

consider the following code
note the function no longer returns a value
also note the final print out of thestruct variables

using System;

public struct student
{

public int enrolment;
public string name;
public int year;

}

slide 19
gaius

Properties of structs

public class test
{

public static void tester (student s)
{

if (s.name == ".") {
s.name = "Joe Smith";
s.enrolment = 11111111;
s.year = 3;

}
}

slide 20
gaius

Properties of structs

public static void Main ()
{

student s, t;

s.name = ".";
s.enrolment = 12345678;
s.year = 1;
t = s;
tester (s);

Console.WriteLine ("student {0} has enrolment number {1} and \
is in the {2} year", s.name, s.enrolment, s.year);

Console.WriteLine ("student {0} has enrolment number {1} and \
is in the {2} year", t.name, t.enrolment, t.year);
}

}

slide 21
gaius

Properties of structs

student . has enrolment number 12345678 and is in the 1 year
student . has enrolment number 12345678 and is in the 1 year

slide 22
gaius

Using a ref parameter to change the value of a struct

we should of course correct the previous code by using aref

parameter
recall that theref parameter passes the address of the variable
rather than the value

slide 23
gaius

Using a ref parameter to change the value of a struct

using System;

public struct student
{

public int enrolment;
public string name;
public int year;

}

slide 24
gaius

Using a ref parameter to change the value of a struct

public class test
{

public static void tester (ref student s)
{

if (s.name == ".") {
s.name = "Joe Smith";
s.enrolment = 11111111;
s.year = 3;

}
}

slide 25
gaius

Using a ref parameter to change the value of a struct

public static void Main ()
{

student s, t;

s.name = ".";
s.enrolment = 12345678;
s.year = 1;
t = s;
tester (ref s);

Console.WriteLine ("student {0} has enrolment number {1} and \
is in the {2} year", s.name, s.enrolment, s.year);

Console.WriteLine ("student {0} has enrolment number {1} and \
is in the {2} year", t.name, t.enrolment, t.year);
}

}

slide 26
gaius

Using a ref parameter to change the value of a struct

student Joe Smith has enrolment number 11111111 and is in the 3 year
student . has enrolment number 12345678 and is in the 1 year

slide 27
gaius

Initialising an array of student structs using a function
method

using System;

public struct student
{

public int enrolment;
public string name;
public int year;

}

slide 28
gaius

Initialising an array of student structs using a function
method

class test
{

public static student setup ()
{

student s;

s.name = Console.ReadLine ();
s.enrolment = Int32.Parse (Console.ReadLine ());
s.year = Int32.Parse (Console.ReadLine ());
return s;

}

slide 29
gaius

Initialising an array of student structs using a function
method

static void Main ()
{

const int nStudents = 40;
student[] all = new student [nStudents];

for (int i = 0; i < nStudents; i++)
{

Console.WriteLine ("Please enter name, enrolment and year");
all[i] = setup ();
Console.WriteLine ("{0} {1} {2}", all[i].name, all[i].enrolment, all[i].year);

}
}

}

slide 30
gaius

Initialising an array of structs using a ref parameter

using System;

public struct student
{

public int enrolment;
public string name;
public int year;

}

slide 31
gaius

Initialising an array of structs using a ref parameter

class test
{

public static void setup (ref student s)
{

s.name = Console.ReadLine ();
s.enrolment = Int32.Parse (Console.ReadLine ());
s.year = Int32.Parse (Console.ReadLine ());

}

slide 32
gaius

Initialising an array of structs using a ref parameter

static void Main ()
{

const int nStudents = 40;
student[] all = new student [nStudents];

for (int i = 0; i < nStudents; i++)
{

Console.WriteLine ("Please enter name, enrolment and year");
setup (ref all[i]);
Console.WriteLine ("{0} {1} {2}",

all[i].name,
all[i].enrolment,
all[i].year);

}
}

}

slide 33
gaius

Classes

sometimes it is desirable to associate specific functions tostructs.
We hav eseen in previous lectures how to:

initialise a struct
format output

it can be desirable to passstruct content by reference automatically

such a data type is known as aclass

and the its functions are calledmethods

slide 34
gaius

Example of a class

suppose we wanted to build an integer calculator in software
we want it to read text such as:12+5

and emit the answer:17

or: 12*5

or: 100/10

we could make our program remember the last value and then allow the
user to type:hex

slide 35
gaius

Typical integer calculator session

-> 100/8
12
-> hex
C
-> 5*4/2
10
-> (5-3)*2
4

slide 36
gaius

Implementing the calculator

we notice that if we start to write the code we need to look for digits
and symbols

by the time a sequence of digits finish we have read a symbol
ie: 100/
we have read/ which has told us that the number100 is complete
unfortunately we need to also remember/ and call the divide
routine (method) a little later

it would be good to implement operator precedence
for a limited number of operators:+, -, *, /, (and)

slide 37
gaius

Pseudo code for the calculator

line = read_a_string ()
s = my_stream (line)
WriteLine ("{0}", expression (s))

function int expression (my_stream s)
{

left = term (s)
while (s.getch () is + or -)

if (it was ’+’)
right = term (s)
left = left + right

else
right = term (s)
left = left - right

return left
}

slide 38
gaius

Pseudo code for the calculator

function int term (my_stream s)
{

left = factor (s)
while (s.getch () is * or /)

if (it was ’*’)
right = factor (s)
left = left * right

else
right = factor (s)
left = left / right

return left
}

slide 39
gaius

Pseudo code for the calculator

function int factor (my_stream s)
{

if (s.getch () is a digit)
return number (s)

else if s.getch () is ’(’
e = expression (s)
s.expect (’)’)
return e

s.error ("was expecting a digit or a (")
return 0

}

slide 40
gaius

Class my_stream

is initialised by a string

has methods
getch returns the next character
putch puts back ch, onto the input stream
expect expects the next character to be,ch, and issues an error
message it is not,ch
error generate an error message

slide 41
gaius

Version 2 of the pseudo code for expression

int expression (my_stream s)
{

int left = term (s);

while ((s.putch (s.getch ()) == ’+’)
|| s.putch (s.getch ()) == ’-’)

if (s.getch () == ’+’)
right = term (s);
left = left + right;

else
right = term (s);
left = left - right;

return left;
}

slide 42
gaius

Code observations

the pseudo code is drifting closer to final C# code

the use ofs.putch (s.getch ()) allows us to peep at the next
character

maybe it is better to refine ourclass my_stream and introduce
another methodpeep

peep returns the a copy of the next character, leaving the original in
place

slide 43
gaius

Version 3 of the pseudo code for expression

int expression (my_stream s)
{

int left = term (s);

while ((s.peep () == ’+’)
|| s.peep () == ’-’)

if (s.getch () == ’+’)
right = term (s);
left = left + right;

else
right = term (s);
left = left - right;

return left;
}

slide 44
gaius

Conclusion

themy_stream class needs to be implemented and needs to have the
following public methods

an initialiser

getch, putch, expect, error andpeep

slide 45
gaius

Conclusion

as the expression, term and factor are run they consume characters from
my_stream

the instance ofmy_stream (in our example,s) needs to be
updated every time a character is removed
we need one value ofs (all the parameters mentionings are in
effect references to the initial value).
which matches the C# implementation of classes (always passed
by reference)

