
slide 2
gaius

Know your tools

"a bad workman blames his tools",
Cambridge Idioms Dictionary

we will examine:
emacs, etags, grep, diff, patch, gcc, gm2,
cvs, gdb, svn

although in this lecture we will only cover emacs
andgdb

and revise our knowledge of C pointers

slide 3
gaius

For the GNU/Linux game developer GDB
is the BFG

get to know this tool!

slide 4
gaius

emacs

GNU Emacs is an extensible, customisable text
editor-and more

at its core is an interpreter for Emacs Lisp, a dialect
of the Lisp programming language with extensions to
support text editing

features of GNU Emacs include:
content-sensitive editing modes
highly customisable, using Emacs Lisp code or a
graphical interface
can run a shell, ssh session, read news, read mail,
rungdb
all the above are editing sessions
learn how to navigate it once, use it in a
multitude of ways

slide 5
gaius

Minimal number of key commands for
emacs

deliberately kept short!

ˆc means control key is pressed and kept down while
thec key is also pressed. After which both are
released.

M-x means press the meta key (the<alt> key) and
then press thex key and then release both.

M-x can also be achieved by pressing the<esc> key,
releasing it and then pressingx and releasing it.

choose which ever seems most natural

slide 6
gaius

emacs keys

Keys meaning

=================

ˆxˆc exit emacs

ˆx2 split screens horizontally into two

ˆxo move cursor into other window

ˆxˆf load in a new file

ˆxˆs save current buffer

ˆxs save all buffers

ˆs search forward

ˆr search reverse

ˆk cut rest of line into kill buffer

ˆy yank the last kill buffer (paste it into the current location)

ˆ<space> mark the current position

ˆw kill all text between current position and last marked position

M-x move to the execute-extended-command line

ˆg stop emacs from doing something

ˆxb change buffer (press tab to see all available buffers)

slide 7
gaius

emacs function keys

f5 debug doom3

f8 goto next compile error

f11 full screen (toggle)

f12 recompile doom3

can be customised by changing$HOME/.emacs

slide 8
gaius

Further emacs information

emacs homepage〈http://www.gnu.org/
software/emacs〉

the best way to learn how to use emacs is by reading
the built-in documentation

to do this, start emacs and then use the commands:
Interactive beginners’ tutorial - to start this from
within emacs, typêht

this is an extremely well written tutorial -
well worth the reading effort

List of Frequently Asked Questions, typeˆhˆf

slide 9
gaius

C Pointers and arrays revisited

a pointer is a variable that contains an address of a
(normally different) variable

arrays and pointers are closely related in C

we can declare an array of integers by:

int a[10];

and we can declare a pointer to an integer, by:

int *b;

slide 10
gaius

Initialising a pointer

we can makeb point to the start of the array, by:

int *b = (int *)&a;

to set the first element of the array to999 we can
either use the pointer or the array variable

slide 11
gaius

Initialising a pointer

#include <stdio.h>

int main ()

{

int a[10];

int *b = (int *)&a;

a[0] = 111;

printf("the first element of the array has been set to %d\n",

a[0]);

*b = 999;

printf("the value of the first element is now %d\n", a[0]);

return 0;

}

slide 12
gaius

Initialising a pointer

we can assign777 to the second element of the array
by the following code:

#include <stdio.h>

int main ()

{

int a[10];

int *b = (int *)&a;

b++;

*b = 777;

printf("the second element of the array has been set to %d\n",

a[1]);

return 0;

}

notice that we moved to the second element on the
array by:b++

slide 13
gaius

Initialising a pointer

we could have also written the code like this:

#include <stdio.h>

int main ()

{

int a[10];

int *b = (int *)&a[1];

*b = 777;

printf("the second element of the array has been set to %d\n",

a[1]);

return 0;

}

slide 14
gaius

Initialising a pointer

or like this:

#include <stdio.h>

int main ()

{

int a[10];

int *b = ((int *)&a)+1;

*b = 777;

printf("the second element of the array has been set to %d\n",

a[1]);

return 0;

}

slide 15
gaius

Initialising a pointer

the addition of1 to a pointer means increment the
address value in the pointer variable by:
sizeof(*b) bytes

avoid arithmetic on pointers if at all possible

slide 16
gaius

Interchanging pointers and arrays

we can also set the third element of the array to 444
by:

#include <stdio.h>

int main ()

{

int a[10];

int *b = (int *)&a;

b[3] = 444;

printf("the second element of the array has been set to %d\n",

b[3]);

return 0;

}

notice how we are treatingb as an array, although we
declared it as a pointer

slide 17
gaius

Interchanging pointers and arrays

clearer than adding,3, to a pointer, and the same
code is generated by the compiler

use the debugger to print out values, or set values

compile the previous example using

$ gcc -g pointer2.c

then we can run the debugger as follows

slide 18
gaius

Interchanging pointers and arrays

$ gdb ./a.out

GNU gdb 6.4.90-debian

Copyright etc...

(gdb) break main

Breakpoint 1 at 0x400480: file pointer2.c, line 6.

(gdb) run

Starting program: /home/gaius/text/Southwales/gaius/c/a.out

Breakpoint 1, main () at pointer2.c:6

6 int *b = (int *)&a;

(gdb) step

8 b[3] = 444;

(gdb) ptype b

type = int *

(gdb) step

9 printf("the second element of the array has been set to %d\n",

step

the second element of the array has been set to 444

11 }

slide 19
gaius

Interchanging pointers and arrays

(gdb) set *b=999

(gdb) print b[0]

$2 = 999

(gdb) print b[3]

$3 = 444

(gdb) set *(b+3)=777

(gdb) print b[3]

$4 = 777

(gdb) quit

slide 20
gaius

structs and pointers

recall astruct can be define a linked list like this:

struct list {

struct list *right;

struct list *left;

char ch;

}

here we declare alist structure which has 3 fields
right, left, andch
right andleft are also pointers to alist
structure andch is a character

slide 21
gaius

Initialising a pointer to a struct

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

struct list {

struct list *right;

struct list *left;

char ch;

};

int main ()

{

struct list *h = (struct list *)malloc (sizeof (struct list));

h->right = NULL;

h->left = NULL;

h->ch = ’\0’;

return 0;

}

slide 22
gaius

prototype for malloc

extern void *malloc (unsigned int nBytes);

which means the functionmalloc takes one
parameter, the number of bytes requested

and returns an address to the start of a memory
block which can be used to containnBytes of
information

remember a generic pointer can be defined by the
constructvoid *

slide 23
gaius

Implementing a program to create a
linked list of characters

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

const char *myString = "hello world";

struct list {

struct list *left;

struct list *right;

char ch;

};

int main ()

{

/* unfinished */

return 0;

}

slide 24
gaius

Implementing a program to create a
linked list of characters

fragment of implementation

struct list *head = NULL;

/* need to complete function add */

int main ()

{

int n = strlen (myString);

int i;

for (i=0; i<n; i++) {

add(a[i]);

}

return 0;

}

slide 25
gaius

Implementing function add (which
contains one deliberate mistake)

void add (char ch)

{

struct list *e = (struct list *)malloc (sizeof (struct list));

if (e == NULL) {

perror("trying to add an element to the list");

exit(1);

}

if (head == NULL) {

head = e;

e->right = e;

e->left = e;

e->ch = ch;

}

else {

/* add e to the end of the list */

e->right = head;

e->left = head->left;

head->left->right = e;

head->left = e;

}

}

slide 26
gaius

Function main

int main ()

{

int n = strlen (myString);

struct list *f;

int i;

for (i=0; i<n; i++) {

add(myString[i]);

}

if (head != NULL) {

f = head;

do {

printf("char %c\n", f->ch);

f = f->right;

} while (f != head);

}

return 0;

}

slide 27
gaius

Tutorial

firstly use the debugger and find the bug inadd

secondly can you rewrite functionsadd andmain so
that you always keep a dummy head element and
therefore you can reduce thehead==NULL tests

the lines of code will reduce and there will be no
need for anelse statement

