Equations of motion

$\bullet \quad V_1 = V_0 + at$

- v is velocity (units m/s)
- a is acceleration (unit m/s^2)
- t is time (units seconds)
- the final velocity equals the initial velocity + time × acceleration
- if we integrate this equation with respect to time we get:

$$X_1 = X_0 + \frac{1}{2}at^2 + V_0t$$

• the final position of the object equals the initial position $+\frac{1}{2}at^2 + V_0t$

Equations of motion

$$V^2 = U^2 + 2a(X_1 - X_0)$$

final velocity V^2 equals the initial velocity $U^2 + 2 \times$ the acceleration \times the difference in position

•
$$X_1 = X_0 + \frac{1}{2}(V+U)t$$

Equations of motion

 $\blacksquare \quad F = ma$

- force in Newtons (Kg m/s^2)
- the force required to accelerate one kilogram of mass at the rate of one metre per second squared
 - Saturn V rocket generated 34.5 million newtons (lift off) !
 - the translunar injection burn propelled the rocket to 10408 m/s
 (23286 miles per hour)

Hookes Law

- $\blacksquare \quad F = -k(l_1 l_0)$
- the force is equal to $-k \times$ the current position of the spring the at rest position of the spring
 - lo at rest position of the spring
 - $\blacksquare \quad l_1 \text{ current position of the spring}$
 - k is the spring constant

Hookes Law

PGE and springs

- examine the example code (https://github.com/gaiusm/ pge/blob/master/examples/springs/simple.py)
- creates a two circles, one is fixed, one is moving and a spring between them
 - in function main

https://github.com/gaiusm/pge/blob/master/examples/springs/simple.py

first = placeBall (wood_light, 0.55, 0.95, 0.03).fix ()
second = placeBall (wood_dark, 0.55, 0.35, 0.03).mass (1.0)
s = pge.spring (first, second, 100.0, 3.0, 0.5).draw (yellow, 0.005)

PGE and springs

- the parameters to the spring method are:
 - first object
 - second object
 - spring constant (k = 100.0)
 - damping constant (d = 3.0)
 - at rest length (l = 0.5)
- if the at rest length is omitted then it is assumed that the distance between first and second is the at rest value

$\blacksquare \quad F_s = -k_s(l-r)$

- \blacksquare F_s is the force of the spring
- \bullet k is the Hookes constant of the spring
- \blacksquare *l* is the current position of the spring
- \bullet r is the at rest position of the spring
- if we model the spring using this equation, the spring will bounce an object forever
 - we need a method to extract energy out of the spring, to give it realism

- $\bullet \quad F_d = -k_d(v_1 v_2)$
 - F_d is the damping force
 - \bullet k is the hookes value of the damping value of the spring
 - v_1 is the velocity of object 1 at the end of the spring
 - v_2 is the velocity of object 2 at the other end of the spring

finally these two equations are joined together

$$F_1 = -(k_s(l-r) + k_d((v_1 - v_2) \cdot L)/l)L/l$$

- \blacksquare F_1 is a scalor overall force of the spring at the current position
 - \bullet k_s is the Hookes constant for the spring
 - \bullet k_d is the Hookes damping constant for the spring
 - v_1 and v_2 are vectors of the velocity of the two objects connected by the spring
 - L is a vector of the positional difference between the two objects
 - \blacksquare *l* is the distance between the two objects

- notice the dot product, which for a vector of two items is equal to:
- $\bullet \quad a \cdot b = a_0 \times b_0 + a_1 \times b_1$
- the input parameters to a dot product operator are vectors and the result is a scalar
- the force acting on object 1 is F_1
- the force acting on object 2 is $F_2 = -F_1$

Springs in PGE

- take a look at the example bridge.py (https://github.com/ gaiusm/pge/blob/master/examples/springs/ bridge.py) which implements a simple bridge using 4 non fixed circles and 5 springs
- notice that PGE allows us to define a callback for a spring when it reaches a length
 - in the bridge example a spring will snap when it reaches snap_length (0.16)