
slide 1
gaius

PGE Springs, Python and Internals

examine the example code in the pge source tree:

slide 2
gaius

PGE Springs, Python and Internals

$HOME/Sandpit/git-pge/examples/springs/bridge.py

left = placeBall (wood_light, 0.25, 0.45, 0.03).fix ()

right = placeBall (wood_light, 0.75, 0.45, 0.03).fix ()

prev = left

springs = []

for x in range (35, 75, 10):

step = placeBall (wood_dark, float (x) / 100.0, 0.33, 0.03)\

.mass (0.9)

s = pge.spring (prev, step, spring_power, damping, 0.1)\

.draw (yellow, 0.002)

s.when (snap_length, snap_it)

springs += [s]

prev = step

s = pge.spring (right, prev, spring_power, damping, 0.1)\

.draw (yellow, 0.002)

s.when (snap_length, snap_it)

slide 3
gaius

PGE Springs, Python and Internals

notice that two circles are fixed in positionleft and
right

now free moving circles are declared at positions:35,
45, 55 and65.

all of these circles are joined by a spring and each
spring will snap if it exceedssnap_length

each spring has ak value and also a damping value

slide 4
gaius

PGE Springs, Python and Internals

s = pge.spring (prev, step, spring_power, damping, 0.1)\

.draw (yellow, 0.002)

here thek value isspring_power and uses
damping and has an at rest length of0.1 unit

pge allows debugging (or visual showing of a spring
yellow and0.002 (width of the rectangle
representing the spring)

this yellow visual cue has no effect in pge, it is
simply drawn between the end points of a spring
object

slide 5
gaius

PGE Springs, Python and Internals

a spring can be requested to call a callback function
when it reaches a specific length

for example when it reachessnap_length it
callssnap_it

snap_it is a simple function

def snap_it (event, object):

object.rm ()

and the spring is deleted, the event parameter
(representing the function call) is ignored

as the only time this function is called is when a
spring is to be deleted

slide 6
gaius

PGE Spring Internals

the main module of the physics engine is
$HOME/Sandpit/git-pge/c/twoDim.c

theSpring entity is declared as astruct called
Spring_r and is defined as:

slide 7
gaius

PGE Spring Internals

$HOME/Sandpit/git-pge/c/twoDim.c

struct Spring_r {

unsigned int id1; /* spring connects to object id1. */

unsigned int id2; /* and id2. */

coord_Coord f1; /* force of spring acting on id1. */

coord_Coord f2; /* force of spring acting on id2. */

coord_Coord a1; /* acceleration vector of spring operating on id1.

coord_Coord a2; /* acceleration vector of spring operating on id2.

double k; /* Hookes constant for the spring. */

double d; /* Damping constant for the spring. */

double l0; /* at rest length. */

double cbl; /* the call back length of the spring. */

double l1; /* l1 is the current length of the spring.

double width; /* width of the rectangle used for drawing the spring.

slide 8
gaius

PGE Spring Internals

$HOME/Sandpit/git-pge/c/twoDim.c

unsigned int drawColour; /* drawing colour. */

unsigned int endColour; /* what colour to draw spring at the end?

unsigned int midColour; /* what colour to draw sprint in the middle?

unsigned int draw; /* should the spring be drawn at all?

unsigned int drawEnd; /* should it be redrawn at the end?

unsigned int drawMid; /* should it be redrawn in the middle?

unsigned int hasCallBackLength; /* is the call back length set?

unsigned int func; /* which function should we call for length?

};

slide 9
gaius

PGE Internals

one of the design decisions in building PGE was to
assume that acceleration remains constant in between
ev ents

velocity and position components of objects however
will vary depending upon time

accelertion remains constant over time
but might change at the next event (collision or
user input)

this works well until springs are introduced!

Hookes LawF = −k(l1 − l0)

and Newtons Law:F = ma

can be combined to show that:

a =
F

m

a =
−k(l1 − l0)

m

slide 10

gaius

PGE Internals

mass is constant, butl1 changes with time
thus acceleration will also vary over time

in effect adding a spring into PGE will potentially
violate one of the core design parameters of PGE

slide 11
gaius

PGE Internals

however PGE can be adapted so that it adjusts the
acceleration of each sprung object every time frame

this is an approximation - similar to numerical
integration
a tradeoff, but it allows springs to coexist inside
PGE

slide 12
gaius

The data structures inside c/twoDsim.c

c/twoDsim.c

typedef enum {polygonOb, circleOb, springOb} ObjectType;

typedef enum {frameKind, functionKind, collisionKind} eventKind;

typedef enum {frameEvent, circlesEvent, circlePolygonEvent,

polygonPolygonEvent, functionEvent, springEvent} eventType;

ObjectType defines the different kinds of object
(ignore spring object)

eventKind defines the three major classification of
ev ents

slide 13
gaius

The data structures inside c/twoDsim.c

eventType further subclassifies the event kind with
the collision event info

we distinguish between a circle/polygon
collision and a circle/circle collision and a
polygon/polygon collision

slide 14
gaius

object (typedef struct _T2_r)

c/twoDsim.c

unsigned int id; /* the id of the object. */

unsigned int deleted; /* has it been deleted? */

unsigned int fixed; /* is it fixed to be world? */

unsigned int stationary; /* is it stationary? */

double gravity; /* the gravity for this object.

coord_Coord saccel; /* the acceleration due to a spring.

coord_Coord forceVec; /* the aggregate force this object generates.

double vx; /* velocity along x-axis. */

double vy; /* velocity along y-axis. */

double ax; /* acceleration along x-axis. */

double ay; /* acceleration along y-axis. */

double inertia; /* a constant for the life of the object used for rotation.

double angleOrientation; /* the current rotation angle of the object.

double angularVelocity; /* the rate of rotation. (Rotation per second).

double angularMomentum; /* used to hold the current momemtum after a collision.

unsigned int interpen; /* a count of the times the object is penetrating another object.

ObjectType object; /* case tag */

union {

Polygon p; /* object is either a polygon, circle or string.

Circle c;

Spring s;

};

slide 15
gaius

object (typedef struct _T2_r)

c/twoDsim.c

typedef struct _T2_r _T2;

typedef _T2 *Object;

notice you can ignore theinertia,
angleOrientation, angularVelocity and
angularMomentum as these are used to implement
rotation

slide 16
gaius

Circle

c/twoDsim.c

typedef struct Circle_r Circle;

struct Circle_r {

coord_Coord pos; /* center of the circle in the world.

double r; /* radius of circle. */

double mass; /* mass of the circle. */

deviceIf_Colour col; /* colour of circle. */

};

slide 17
gaius

Polygon

c/twoDsim.c

typedef struct Polygon_r Polygon;

struct _T3_a { polar_Polar array[MaxPolygonPoints+1]; };

struct Polygon_r {

unsigned int nPoints;

_T3 points;

double mass;

deviceIf_Colour col;

coord_Coord cOfG;

};

typedef struct _T3_a _T3;

slide 18
gaius

Polygon

the polygon has an array which is used to contain
each corner

a corner is a polar coordinate from the centre of
gravity

cog

P0

P1

P2
P3

slide 19
gaius

Polar coordinates

remember that a polar coordinate has a magnitude
and an angle

an angle of 0 radians is along the x-axis
magnitude of,r and an angle ofω

so we can convert a polar to cartesian coordinate by:

x = cos(ω) × r

y = sin(ω) × r

slide 20
gaius

Polar coordinates

in our diagram

P0 = (p0, 135/360× 2π)

P1 = (p1, 45/360× 2π)

P2 = (p2, 315/360× 2π)

P3 = (p3, 225/360× 2π)

where p1, p2, p3, p4 are the lengths of the line from
the CofG to the corner

dotted lines in our diagram

slide 21
gaius

Polar coordinates

the angle values in the polar coordinates for our
polygon are the offset of the angle for the particular
corner

the angularVelocity is used to determine the
rotation of the polygon, this is added to each
corner to find out the corner position at any time

this allows rotation of the polygon to be modelled at a
later date

slide 22
gaius

Polar coordinates

at any time in the future,t we can determine the
polygons corner,i by:

Ω = angleOrientation + angularVelocity × t

xi = cofgx + ri × cos(ω i + Ω)

yi = cofgy + ri × sin(ω i + Ω)

slide 23
gaius

Polar coordinates

we can see how this data structure represents a
polygon by following thedumpPolygon function

slide 24
gaius

Polar coordinates

see how each corner is defined by following through
the functionbox

into poly4

how it calculates the box CofG

how it defines each corner relative to the CofG and as
a polar coordinate

each corner is orbiting the CofG

slide 25
gaius

dumpPolygon

c/twoDsim.c

static void dumpPolygon (Object o)

{

unsigned int i;

coord_Coord c0;

libc_printf ((char *) "polygon mass %g colour %d\\n", 27,

o->p.mass, o->p.col);

libc_printf ((char *) " c of g (%g,%g)\\n", 19,

o->p.cOfG.x, o->p.cOfG.y);

for (i=0; i<=o->p.nPoints-1; i++)

{

c0 = coord_addCoord (o->p.cOfG,

polar_polarToCoord (polar_rotatePolar

((polar_Polar) o->p.points.array[i], o->angleOrientation)));

libc_printf ((char *) " point at (%g,%g)\\n", 20, c0.x, c0.y);

}

}

slide 26
gaius

dumpPolygon

follow through the functiondoDrawFrame and see
how the corners of a polygon are updated dependant
upon theangularVelocity,
angleOrientation and the acceleration and
velocity components

examinenewPositionRotationCoord,
newPositionRotationSinScalar and
newPositionRotationCosScalar

