
slide 1

gaius

Collision detection: bounding boxes,
bounding spheres

accurate collision detection can be expensive

this is particularly true in PGE which will

calculate the time of next collision

sometimes an accurate time of next collision is not

necessary

for example if the objects are sufficiently far

apart and are travelling slowly

an inexpensive way to determine whether objects are

not going to collide is to use the bounded shape

technique

slide 2

gaius

Bounding rectangle (boxes)

slide 3

gaius

Bounding circle

slide 4

gaius

Bounding boxes, bounding spheres

these approaches can be very useful as they allow us

to treat polygons as circles

and circles as polygons

for the purpose of collision detection

we can also combine shapes into an aggregate circle

or rectangle

finally creating bounding circles will help detect

whether a rotating object will not collide (within a

time period)

should provide a significant optimisation for

rotating objects which are spinning but not

moving

a bounding circle is a single object, compared to

a polygon - which must have at least 3 vertices



slide 5

gaius

Implementing bounding circle in PGE

recall that polygons are represented by an array of

vertices

each vertice has a polor coordinate from the

center of gravity

cog

P0

P1

P2

P3

we need to find the longest point away from the

centre of gravity and this will become our radius

slide 6

gaius

Implementing bounding circle in PGE

the polar coordinates are defined by a radius and

angle

Sandpit/git-pge/c/polar.c

struct polar_Polar_r {

double r;

double w;

};

we can ignore the angle and choose the largest radius

at this point we have a bounded circle which can

be used to test against other circles

slide 7

gaius

Collision detection pipeline

the PGE uses both collision prediction and frame

based collision detection

both techniques are fed from the broadphase list

study the function initBroadphase and also the

broadphase structure (_T5_r)

slide 8

gaius

broadphase struct

pge/c/twoDsim.c

{

unsigned int o0; /* first object potentially in collision.

unsigned int o1; /* second object potentially in collision.

broadphase next; /* next pair of objects. */

}

the function initBroadphase generates a list of

pairs of object which need to be examined

many of which will not collide



slide 9

gaius

broadphase struct

it is expensive (time) to accurately determine whether

an object will collide

but much less expensive to cull the list of object

pairs which cannot collide

you can implement this optimisation and then

observe the FPS of the game engine

study the function optBroadphase

notice that this is only called when the game

engine is in frame based mode

slide 10

gaius

optPredictiveBroadphase

examine the function

optPredictiveBroadphase

this is only called when the game engine is in

predictive mode

start with this function, as predictive mode is the

game engine default

try implementing optPredictiveBroadphase so

that it culls pairs of objects which are moving away

from each other

you should check both acceleration vectors and

velocity vectors of both objects

hint examine and use

circle_moving_towards

slide 11

gaius

optBroadphase

is easier to implement than

optPredictiveBroadphase but it is only used

when pge runs in frame based interpentration mode

optBroadphase can be implemented using

bounding circles

also implement bounded rectangle culling

make your implementation count the culling

categories

it might be a good idea to have a Python API call to

turn on/off these two optimisations

slide 12

gaius

optBroadphase

observe the frames per second in your new optimised

PGE

does it make a noticable difference?


