
slide 1
gaius

Python Pygame: Mario movement

r1l

r2l

r2r

r3l

l1t

l2t

l1b

l2b

slide 2
gaius

Python Pygame: Mario movement

Mario requires the movement
along ramps
up ladders
up to next ramp and down to lower ramp, when
he reaches the end

ideally he should be able to jump off ladders!
left as an exercise for the reader

Mario also needs the ability to jump
left as an exercise for the reader

slide 3
gaius

Python Pygame: Mario movement

one solution is to put Mario on rails
he can change direction (or path at the end of the
current path)
he can reverse direction at any time
he needs the ability to choose a ladder

placing Mario on rails is just one solution
another might be to use sprites for ramps and
ladders and detect collisions

slide 4
gaius

Mario on rails

in Computer Science we often have the tradeoff
between complex data structures or complex code

adding a little complexity to the data structures will
reduce the complexity of the code

define a map for Mario, map is a dictionary of paths
at each end point in the Mario diagram we have a
path for any chosen direction

slide 5
gaius

Mario on rails

r1l

r2l

r2r

r3l

l1t

l2t

l1b

l2b

slide 6
gaius

Mario on rails

starting atr3l we note:
he cannot move up
he can move right towardsr3r he will pass
ladderl2b
he cannot move down
if he moves left he dies

map = { "r3l-0": None, # up
"r3l-1": ["r3r", ["l2b"]], # right
"r3l-2": None, # down
"r3l-3": ["d3", []], # left
...

where
pointname-0 is up,pointname-1 is right,
etc
if the path exists it is a list

slide 7
gaius

Mario on rails

when he reachesr3r his choices are:
up to ramp 2
back tor3l

he cannot go down and he cannot go right

"r3r-0": ["r2r", []], # up
"r3r-1": None, # right
"r3r-2": None, # down
"r3r-3": ["r3l", ["l2b"]], # left

slide 8
gaius

Path list

all path lists must be entered into the dictionarymap

however is a path is not an option for Mario then
its value in the dictionary isNone

any nonNone path will consist of the following
entries:

first element is the furthest destination way point
the second element is also a list of optional
ladders

slide 9
gaius

Consider paths for ramp 2

"r2r-0": None, # up
"r2r-1": None, # right
"r2r-2": ["r3r", []], # down
"r2r-3": ["r2l", ["l2t", "l1b"]], # left

he cannot go up or right from pointr2r
he can go down tor3r
and he can move left tor2l and optionally
chose laddersl2t or l1b

slide 10
gaius

Consider paths for ramp 2

and if he reaches pointr2l

"r2l-0": ["r1l", []], # up
"r2l-1": ["r2r", ["l2t", "l1b"]], # right
"r2l-2": None, # down
"r2l-3": None, # left

here at pointr2l he can move
up tor1l
right (and return) to r2r possibly chosing ladders
l2t andl1b

he cannot go left or down

slide 11
gaius

Code changes to get basic movement
working

global variables initialised

max_speed = 50
step_horizontal = 30
step_vertical = 20
M = None

stand_left, stand_right, jump_left, jump_right, up_left, up_right = range (6)
mario_actions = [stand_left, stand_right, jump_left, jump_right, up_left, up_right]

action_image_names = ["mario-stand-l.png", "mario-stand-r.png",
"mario-jump-l.png", "mario-jump-r.png",
"mario-up-l.png", "mario-up-r.png"]

slide 12
gaius

Mario sprite class

class mario (pygame.sprite.Sprite):
image = None
def __init__ (self, o, d, startpos, path):

pygame.sprite.Sprite.__init__(self)
mario.image = pygame.image.load (barrel_colour()).convert_alpha ()
self.images = []
self.orientation = o
for i in mario_actions:

self.images += [pygame.image.load (action_image_names[i]).convert_alpha ()]
self.image_height = 0
self.image_width = 0
self._change (d)
self.rect = self.image.get_rect()
self.newpath = path
startpos = self.adjust (startpos)
self.route = bres.walk_along (startpos, startpos)
self.curpos = self.route.get_next ()
self.rect.topleft = self.curpos
self.next_update_time = 0
self.Xspeed = 0
self.direction = None
self.path = None
self.pathname = None

slide 13
gaius

Mario sprite class

def new_goal (self, d):
print "new_goal says our newpath is", self.newpath
self.pathname = "%s-%d" % (self.newpath, d)
print "Mario is using path", self.pathname,
path = map[self.pathname]
print " =", path
if path == None:

print "no path to walk along"
self.route = bres.walk_along (self.curpos, self.curpos)

else:
print "newpath =", self.newpath
self.path = self.newpath
self.newpath = path[0]
print "path =", self.path, "newpath =", self.newpath
endpos = self.adjust (points[self.newpath])
self.route = bres.walk_along (self.curpos, endpos)
self.direction = d

slide 14
gaius

Mario sprite class

def on_ladder (self):
if self.pathname != None:

path = map[self.pathname]
if path != None:

for l in path[1]:
print l
if self.is_on (points[l][0]):

return True, l
return False, self.newpath

def go (self, k):
if k == K_RIGHT:

self._horizontal (1, stand_right)
elif k == K_LEFT:

self._horizontal (3, stand_left)
elif k == K_UP:

self._vertical (0, up_right)
elif k == K_DOWN:

self._vertical (2, up_left)

slide 15
gaius

Mario sprite class

def _horizontal (self, newdir, o):
if self.direction in [0, 2]:

could be going up a ladder or between ramps at the end
if self.route.finished ():

we have reached the end of the ladder or end of the up/down route
self.orientation = o
self._change (o)
self.next_update_time = 0
self.new_goal (newdir)

else:
if self.direction == newdir:

same direction, just continue, faster
self.Xspeed = min (self.Xspeed + step_horizontal, max_speed)

else:
self.orientation = o
self._change (o)
self.next_update_time = 0
self.new_goal (newdir)

slide 16
gaius

Mario sprite class

def _vertical (self, newdir, o):
if self.direction in [1, 3]:

going left or right, check if we can use ladder
b, self.newpath = self.on_ladder ()
if b:

print "using a ladder", self.newpath
self.orientation = o
self._change (o)
self.next_update_time = 0
self.new_goal (newdir)

elif self.route.finished ():
can also go up at the end of the ramp
self.orientation = o
self._change (o)
self.next_update_time = 0
self.new_goal (newdir)

slide 17
gaius

Mario sprite class

else:
already going up or down, might be on a ladder or end of a ramp
if self.direction == newdir:

same direction, just continue, faster
self.Xspeed = min (self.Xspeed + step_vertical, max_speed)

else:
change of direction
self.orientation = o
self._change (o)
self.next_update_time = 0
check to see if already on ladder
if (self.pathname != None) and (self.pathname[0] == "l"):

make new goal the previous start
self.newpath = self.path
self.new_goal (newdir)

else:
self.new_goal (newdir)

slide 18
gaius

Mario sprite class

def _change (self, d):
self.image = self.images[d]
self.image_height = mario.image.get_height()
self.image_width = mario.image.get_width()
self.next_update_time = 0

def update (self, current_time):
if self.next_update_time < current_time:

if self.Xspeed > 0:
self.curpos = self.route.get_next ()
self.rect.topleft = self.curpos
self.Xspeed -= 1
self.next_update_time = current_time + 1

def adjust (self, p):
return [p[0], p[1]-self.image_height]

def is_on (self, x):
return not ((self.curpos[0] + self.image_width < x) or

(self.curpos[0] > x + xpos (ladder_width)))

slide 19
gaius

Mario sprite class

def checkInput():
for event in pygame.event.get():

if event.type == KEYDOWN:
if event.key == K_ESCAPE:

sys.exit (0)
elif event.key in [K_RIGHT, K_LEFT, K_UP, K_DOWN]:

M.go (event.key)
elif event.key == K_f:

pygame.display.toggle_fullscreen()

slide 20
gaius

Mario sprite class

def play_game (screen):
global M
o = -1
M = mario (stand_right, 1, points["r3l"], "r3l")
while True:

t = pygame.time.get_ticks()
if o != t:

activity_scheduler (t)
o = t

checkInput()
screen.fill(white) # blank the screen.
draw_polygons ()
for b in barrels:

b.update (t)
screen.blit (b.image, b.rect)

M.update (t)
screen.blit (M.image, M.rect)
pygame.display.flip ()

slide 21
gaius

Homework and tutorial

finish the path map definition and integrate the
movement into your code

make Mario jump, fall off ladders

improve speed of movement and
smoothness/playability

scoring, timing, sounds etc

slide 22
gaius

PGE input

implementing Mario using the Physics game engine
is much easier!

since the ball representing Mario is free running it
just needs to be given a push when we want it to
move

we could
push it left with the left mouse button
push it right with the right mouse button
up with the middle mouse button

slide 23
gaius

PGE input

def mouse_hit (e):
global m
mouse = pge.pyg_to_unit_coord (e.pos)
if e.button == 1:

m.put_xvel (gb.get_xvel ()-0.3)
elif e.button == 3:

m.put_xvel (gb.get_xvel ()+0.3)
elif gb.moving_towards (mouse[0], mouse[1]):

pos = m.get_unit_coord ()
print "mouse =", mouse, "ball =", pos
m.apply_impulse (pge.sub_coord (mouse, pos), 0.4)

else:
m.put_yvel (m.get_yvel ()+0.4)

slide 24
gaius

PGE input

in the main function we register the mouse event with
our function

pge.register_handler (mouse_hit, [MOUSEBUTTONDOWN])

please see the implementation of breakout to see how
this is integrated into a gamebreakout example
〈http://floppsie.comp.glam.ac.uk/
Glamorgan/gaius/pge/homepage.html〉

slide 25
gaius

Collisions in PGE

refering again to thebreakout source code example
〈http://floppsie.comp.glam.ac.uk/
Glamorgan/gaius/pge/
example_games.html〉

notice that the section of code containing
delete_me andbox_of

slide 26
gaius

Collisions in PGE

def delete_me (o, e):
global blocks, winner, loser

blocks.remove (o)
o.rm ()
if blocks == []:

if not loser:
winner = True
pge.text (0.2, 0.3, "Winner", white, 100, 1)
pge.at_time (4.0, finish_game)

def box_of (pos, width, height, color):
global blocks

blocks += [pge.box (pos[0], pos[1], width, height, color)\
.fix ().on_collision (delete_me)]

slide 27
gaius

Collisions in PGE

the functionbox_of creates a blue box atpos with a
width andheight

it also stipulates that this box isfixed

furthermore if anything hit this box then the function
delete_me is called

slide 28
gaius

Collisions in PGE

the functiondelete_me is a call back registered by
the call toon_collision (described on the
previous slide)

this call back must be defined taking two parameters
the first,o, is the object whose callback is being
called
the second,e, is the collision event which has
describes the collision

by using the event,e, it is possible to find out the
other object in collision and other properties (if
necessary)

