
Coursework Introduction

Ben Daubney

Coursework

• Due date 27th April (6 term weeks, 5
teaching).

• Value - 50%

• We’ve covered the essentials of what you
need.

• Will do custom controls next week – you
might want to use this.

Demo

Motivation

• Content Creation Tools:
– Many tools exist to create content for games, e.g.

animate characters, create textures, sound etc.

– Often companies will produce custom content
creation tools specifically for their
products/games.

Problems

1. XAML and C#.

2. Getting to grips with Ben’s code.

(you can do everything from scratch if you
want!)

Purpose of Coursework

• Examine that you understand the concepts we
have covered in lectures (more on this later).

• Get you used to working with other people’s
(which may not be as clean as you would like)
code.

Project Development

If you did the same project twice would it take as long
the second time?

You have three levels of knowledge:
1. What you know.
2. What you know you don’t know.
3. What you don’t know you don’t know (ignorance).

Project Development

All knowledge in some area….

1. What you know.
2. What you know you don’t
know.

3. What you don’t know you
don’t know.

Early Stages…

Project Development

All knowledge in some area….

1. What you know.
2. What you know you don’t
know.

3. What you don’t know you
don’t know.

Mid Stages…

Project Development

All knowledge in some area….

1. What you know.
2. What you know you don’t
know.

3. What you don’t know you
don’t know.

By end of project…

Project Development

• By the end of a project you have more
knowledge.

• However, you are more aware of how much
you don’t understand.

• Can feel like you know less at the end than the
beginning.

Project Development

• At the beginning of project you have least
knowledge. This is the worst time to make big
decisions about your design!

• Be prepared to make changes as you go along.

Project Development

• Decide whether you would rather tackle the
knowns or unknowns first.

• In real world projects getting a handle on the
unknowns allows risk to be managed.

• Coursework is different to real world projects,
for coursework it’s good to get easy marks
under your belt before you tackle more
challenging aspects.

Project Development

• 80/20 rule:
– It takes 20% of the time to solve 80% of the

problem.

– It takes the remaining 80% of the time to solve the
remaining 20%.

Project Development

• For coursework 60/40 rule:
– You can get 60% of the marks in 40% of the time.

• Therefore, first just try to get a solution
working.

• Then if you have time, try to improve it make
use of what we have covered in lectures.

Project Development

• Use an iterative approach.

• Get things working first and then worry about
improvements/modifications.

• Use some sort of source control.

Marking Guidelines

• Code needs to be commented.

• Functions and function parameters should be documented (for
event handlers just give overview).

• You can choose your coding conventions but must be
consistent, choose something known (c-style, camel case etc
etc).

• Make sure GUI items are appropriately named (abbreviation
indicates control type).

Comments and Documentation

• Think about who you are writing for:
– Class/function documentation is targeted at users

of the class/function. They may not be able to
view code.

– Code commenting is targeted at other developers
who may want to maintain/update your code.

Class Documentation

• Describe what class does.

• Provide indication of how class is typically
used (may refer to class methods).

Function Documentation

• Describe what function does.

• Describes function parameters and they’re purpose, how they are
used.

• Describes any assumptions made by the method (e.g. valid input
data, data already loaded).

• May contain description of how function works if it’s important for
user to know.

• Use auto format (C# press “///”)

Commenting Code

• Purpose of commenting code?

– Make code easier/faster to understand?

– Allow author to indicate intent.

– Allow author to indicate their thought process.

Bad Comments

• Explicitly says what the line of code does:

• Is incorrect:

• Is irrelevant/mildly offensive:

// Close the client.
client.Close();

// Open the client.
client.Close();

// You work it out sucker.
client.Close();

Commenting Code

• Sometimes better to comment blocks of code,
rather than individual lines.

 ///
 // register callback and start listening for messages.

 receiver.OnUpdate += new UpdateCallback(UpdateSummary);
 receiver.OnUpdate += new UpdateCallback(UpdateTable);

 receiverThread = new Thread(new ThreadStart(receiver.DoSomething));
 receiverThread.Start();

 ///
 // Do next job…..

Good Coding Practices

• Declare variables when you need them.

• Don’t give variables scope beyond when you need them.

• Don’t try to optimise code.
– If code is clearer in 12 lines than 1 leave it as 12.

• Remove unused variables/function parameters.

• Consider whether all class members/methods are necessary.

(function size??)

• Ensure Private/Public/Protected is correct.

Code Quality

• Re-useable.
– Try to limit code duplication (event handlers).

• Understandable.

• Maintainable.

Reusing my Code

• You don’t lose marks for re-using given code.
– You don’t need to re-comment any given code.

– You may want to refactor sections if it proves
useful to you/makes code more reusable.

• However, the XAML section on the GUI
interface is poor (thus this is the focus of the
coursework).

Reusing my Code

• Don’t spend ages trying to fully understand
the given code.

• You will understand the important bits as you
progress.

Leaving the Game In

• I would prefer you to remove the parts of code
that make the game work (e.g. so you can’t
play the game through the CW you hand in).

• If you don’t remove the game parts you won’t
lose marks but make sure the game always
works even after editing code.

What have we covered?

1. A variety of basic controls.

2. How to handle events on a specific control.

3. How to make use of the sender object in a event
handler.

4. How to make use of the event args (e.g. mouse
position).

5. How to set an event handler on a panel to handle
child events.

6. Using panels for different layouts.

7. Adding panels as content.

Marking Scheme
The tool must be able to load and display a level in
its initial configuration.

10

The tool must allow a user to toggle a tile between
floor and wall.

20

The tool must allow the user to change the bmp’s
used to represent floor and wall tiles, the knights,
ghosts, fire and stairs. The appearance of the board
should be appropriately updated.

15

The tool must allow the user to change the number
of rows and columns contained in the tiled games,
whilst maintaining existing data. Any items outside
of the board should be moved to (0,0).

20

The tool must allow the user to be able to add and
remove ghosts from the level by directly clicking on
a tile.

15

The tool must allow the user to be able to define
the start position of the knight and the location of
the stairs.

10

The tool must allow the user to be able to save new
levels that can be loaded into the game.

10

Marking Scheme

• The purpose of your coursework is to check
that you understand the material delivered in
the course.

• Most of the marks are for demonstrating
understanding (through code, comments and
documentation).

Advice

• The layout I have given as an example in the
coursework is not necessarily the best layout.

• Try to vary your controls/methods (think
about usability).

• Try to demonstrate your knowledge!

Advice

• If you can’t do something, partial solution is fine.
– E.g.

Can’t get floor/wall to toggle. However, you did manage to
get position of click and update level, just struggled with re-
render. Will probably still get good marks, leave a comment
as to where you got stuck.

• If you want to add a document explaining
anything I need to know (e.g. bugs, how your
program works) you can do and I will read it.

Asking for help

• I’m happy to help*

• I can’t write code for you.

• I can explain examples/slides/tutorial solutions.

* Help provided proportional to perceived effort.

Feedback

• I will perform code review as well as overall
comments.

• Just because I make a suggestion in the code
review, doesn’t mean it lost you marks.

Overview of Game

GUI and Events

Rendering Game Engine

Level Loading
Saving

MainWindow.xaml.cs

GameEngine

CGameEngine CLevel

CGameState MainWindow

gameEngine: CGameEngine
gameState: CGameState
currentLevel: Clevel

RunGame()

-m_levelMap: eTileType[,]
+Height: int
+Width: int

Get/SetTileType()
Resize(sX, sY)

Player: CSprite
Enemies: CEnemies[]

Probably don’t need these.

Level Loading Saving

CLevel

-m_levelMap: eTileType[,]
+Height: int
+Width: int
+StartPosition: CPoint2i
+GoalPosition: CPoint2i
+EnemyPositions: List<CPoint2i>

Get/SetTileType()
Resize(sX, sY)

CLevelParser

ImportTextures(String):CGameTextures
ExportTextures(CGameTextures, String)
ImportLevel(String): Clevel
ExportLevel(String, Clevel);
LockFreeBMPLoad(string): BitmapImage

CGameTextures

PlayerIcon: BitmapImage
EnemyIcon: BitmapImage
GoalIcon: BitmapImage
WallTexture: BitmapImage
FloorTexture: BitmapImage

IsSet(): Bool

Stores level data, e.g. starting
positions, wall positions etc.

Stores all textures (assume 32 by
32).
IsSet() indicates whether all
textures have been set to
something.

Level Loading Saving

Helpful hint:

Rewriting the Level Parsers would be a
very unnecessary thing to do!

Rendering

Static Components
DrawLevel()

Dynamic Components
RenderGameState()

Initialisation
Note this only moves
the position of image
controls it does not
create them!

Rendering

cvsMainScreen: Canvas

Image controls added
As children.

gameTextures: CGameTextures

PlayerIcon: BitmapImage

EnemyIcon: BitmapImage

FloorTexture: BitmapImage

WallTexture: BitmapImage

ImageSource

Dynamic Scene Rendering

cvsMainScreen: Canvas
gameTextures: CGameTextures

PlayerIcon: BitmapImage

EnemyIcon: BitmapImage

FloorTexture: BitmapImage

WallTexture: BitmapImage
Also
added
as
control.

Image[]
enemyIcons;
Image
playerIcon;

We maintain a ref to Image
controls to adjust their positions.

Rendering

• Will changing a BitmapImage on gameTexture
automatically update all Image controls (tiles)
that use that image?

No, the ImageSource would still reference
the old image, the ImageSource must be
refreshed on each control.

Initialisation

1. Clear all children from panel.
2. Load level and textures.
3. DrawLevel() -> Draws static parts of level.
4. Add Image controls for Player and Enemies (stored in array).
5. Set ImageSource for each Image control to relevant texture from gameTextures.
6. Create and initialise GameState from currentLevel.
7. RenderGameState.

Editor won’t need these
steps, can just use
settings from
currentLevel.

Approaches

• Changing a tile’s appearance, texture:
– Sledgehammer approach:

Clear everything and redraw from scratch.

– Tack hammer approach:

1. Change the image source on only those
Images that have changed.

2. Change the position of only those Images that
have moved.

Other items of interest

• CLevelUtils contains two static methods for
converting between pixel coordinates and tile
coordinates:
– GetTileCoordinatesFromPixel(…)

– GetPixelFromTileCoordinates(…)

• Usage:

CPoint2i PixelPosition = CLevelUtils.GetPixelFromTileCoordinates(TilePosition);

Assumptions

• Assume textures will be 32 by 32 pixels.

• Assume level directory for saving will be specified in text box
(unless you can do otherwise).

• Assume a user may save to the same directory they loaded from.

• If you provide a text box for the user to enter number of
rows/columns assume input is a number. I won’t try to enter text
(however, I may enter stupid numbers!).
p.s…. In case you forgot -> int i= Int.Parse(txtMyNumber);

String containing number e.g. “45”

A quick aside on Lists

• To add an item:
myList.Add(object);

• To remove an item:

 myList.Remove(object);

• To access number of items:

 myList.Count();

• To access item:

 myList[i];

Removes by
reference.

Questions

Good Luck!

	Slide 1
	Coursework
	Demo
	Motivation
	Problems
	Purpose of Coursework
	Project Development
	Project Development
	Project Development
	Project Development
	Project Development
	Project Development
	Project Development
	Project Development
	Project Development
	Project Development
	Marking Guidelines
	Comments and Documentation
	Class Documentation
	Function Documentation
	Commenting Code
	Bad Comments
	Commenting Code
	Good Coding Practices
	Code Quality
	Reusing my Code
	Reusing my Code
	Leaving the Game In
	What have we covered?
	Marking Scheme
	Marking Scheme
	Advice
	Advice
	Asking for help
	Feedback
	Overview of Game
	GameEngine
	Level Loading Saving
	Level Loading Saving
	Rendering
	Rendering
	Dynamic Scene Rendering
	Rendering
	Initialisation
	Approaches
	Other items of interest
	Assumptions
	A quick aside on Lists
	Questions

