
slide 1
gaius

How does an operating system boot?

firstly we need to understand the minimum details as to how the IBM-
PC boots

secondly we need to understand the desired final outcome at the end of
the boot phase

thirdly we can examine a specific example to better understand the
steps taken to achieve the outcome



slide 2
gaius

How does an IBM-PC boot?

the bios settings dictates the boot device order

the bios attempts to load in the first 512 bytes (boot sector) from the
various devices in order

not all devices may be present: usb memory stick, floppy disk

the bios loads in the 512 bytes from the first found device at 0x7c00
it sets register:dl to the device number
the bios then jumps to location 0x7c00



slide 3
gaius

Boot sector code charactistics and functionality

it remembers the bios boot device (usb/floppy/harddisk) in a processor
registerdl

it copies itself into a sensible location (typically out of the way in high
memory)

it reassigns the stack to a consistant location

it loads in the secondary boot stage of the operating system (a sector at
a time)



slide 4
gaius

Boot sector code charactistics and functionality

it may perform very limited checking as each subsequent sector/track is
read from the device into memory

finally it jumps to the start of the secondary code.



slide 5
gaius

The language used to implement the bootsector (first)

the boot sector (first) is not normally written in a high level
language as it needs the ability to:

copy its code segment, reassign the stack (change theSP and stack
segment registers)
the ability to jump to a physical location and it must fit in 512
bytes



slide 6
gaius

Final desired outcome after all the boot phases are
complete

Max memory

n Mb Stack

(grows downwards)

1 Mb

Heap

(grows upwards)

Interrupt Vectors

640k

0

10000H

(loaded)

BSS initially zero

Data (loaded)

Code

unused



slide 7
gaius

Example: LuK booting

LuK consists of a collection of modules

the microkernel only links the modules actually required at runtime

the mixture of the modules required for different targets and
applications may be different



slide 8
gaius

Linker

uses the fileinit to generate a list of modules and generates an ELF32
bit x86 executable which contains data, code and symbol information

for example we will name this,application.third



slide 9
gaius

Boot phases

in the build directory you would see
first, second



slide 10
gaius

first

first is a tiny model 8086 executable, written in assembly language

seeluk-1.0.3/boot/BAS/boot.S
watch out as the assembler uses:mov dest, src

its total size (data + code) must not exceed 512 bytes

its duty is threefold
pretend to be a fat12 file system!
move itself to a sane location
load insecond



slide 11
gaius

second

is written in Modula-2, which is compiled and linked into a tiny model
8086 executable

tiny model
sets all segment registers to the same value
total size of data + code + stack must not exceed 64K

in fact due to legacy booting via the floppy disk it cannot be more than
7K



slide 12
gaius

second

its duty is to load in theapplication.third

set up protected mode and move from tiny model into 32 bits

pass various system parameters intoapplication.third
such as memory size, video memory start

finally jump to the start ofapplication.third



slide 13
gaius

Goal of the overall boot procedure

Max memory

n Mb Stack

(grows downwards)

1 Mb

Heap

(grows upwards)

Interrupt Vectors

640k

0

10000H

(loaded)

BSS initially zero

Data (loaded)

Code

unused



slide 14
gaius

Goal of the overall boot procedure

notice that no tiny model code will exist in the end

all code is 32 bit and belongs to the core microkernel

first andsecond will be overwritten



slide 15
gaius

Overview of the boot stages

three boot phases
first boot stage (boot sector, 1 sector, assembly language)
secondboot stage (up to 14 sectors 8088 small mode Modula-2)
LuK (up to 512K of32 bit code, Modula-2 and C)

up to 512 K bytes14*512512

Modula-2 and CModula-2

8088

boot

Secondary

8088

512 bytes

sector
Boot

80586

LuK



slide 16
gaius

LuK boot first

(programfirst)

512 bytes boot sector is small! Just enough space to place an assembly
language program which loads in a larger program

loads insecondaryboot stage at 0x90200
jumps to 0x90200

secondaryboot stage (programsecond)
consists of limited amounts of assembly language
most of the code is written in Modula-2 but compiled to small
mode 8088
the secondary stage may be up to 14 sectors in size (14 * 512
bytes)



slide 17
gaius

Secondary boot stage

purpose ofsecondaryboot stage is to load in yourapplication.third
code as quickly as possible

it uses whole track reads whenever possible (fast)
theprimaryboot stage only used single sector loads (slow)
it loads in the LuK32 bit executable (application.third) into
location 0x10000
collects vital statistics about the PC (how much memory the PC
contains and where video memory starts)
saves this information
turns the floppy disk motor off

finally secondputs the microprocessor into 32 bit mode and calls
application.third



slide 18
gaius

Boot phase in more detail

howdo you putLuK in the right place?
tip, think backwards

start with the final position you desire
and consider how you can achieve it
draw memory maps of the differentLuK bootstage intermediate
positions



slide 19
gaius

Final memory map for LuK

Max memory

n Mb Stack

(grows downwards)

1 Mb

Heap

(grows upwards)

Interrupt Vectors

640k

0

10000H

(loaded)

BSS initially zero

Data (loaded)

Code

unused



slide 20
gaius

Second memory map for LuK

Max memory

n Mb

1 Mb

Interrupt Vectors

640k

0

10000H

90200H

second.mod
(code+data+stack)



slide 21
gaius

Boot memory map for LuK

Max memory

n Mb

1 Mb

640k

0

90200H

90000H copy of boot sector

7c00
initial boot sector (BIOS)



slide 22
gaius

Conclusion

this technique works

it is not the most efficient, it might be possible to makefirst perform the
actions ofsecond

however the approach presented here allows us to:
execute high level language code sooner

some of the older limits should be removed now that booting floppy
disks is no longer needed

maybe it would be sensible to move LuK to start at 1MB upwards
would allow LuK to expand


