
slide 1
gaius

Semaphores and a shared buffer

recall our previous example from last week which had two processes
one process callsput and another process callsget

both operate on a shared buffer
we use a semaphore calledMutex to protect the buffer

slide 2
gaius

Semaphores and a shared buffer

void put (char ch) char get (void)

{ {

Wait(Mutex) Wait(Mutex)

(* safe to alter *) (* safe to alter *)

(* buffer *) (* buffer *)

place ch into buf remove ch from buf

Signal(Mutex) Signal(Mutex)

return ch;

} }

char buffer[Max]; (* global data *)

SEMAPHORE Mutex; (* global data *)

slide 3
gaius

Semaphores and a shared buffer

what happens if a process callsget before a process callsput?

there is no character to take from the buffer
there is no data to return

what happens if a process keeps callingput and no process callsget
potentially the buffer will be overrun

slide 4
gaius

Semaphores and a shared buffer

both cases can be fixed by using two additional semaphores

if there is no character in the buffer and we callget then we should
wait until data arrives

if there is no space in the buffer and we attempt toput a character into
the buffer then we shouldwait until space becomes available

slide 5
gaius

Semaphores and a shared buffer

we can implement this with two semaphores, which we will declare as
itemAvailable

spaceAvailable

slide 6
gaius

Semaphores and a shared buffer

before we place a character into a buffer we must
wait(spaceAvailable)

before we extract a character from a buffer we must
wait(itemAvailable)

after we place an item into the buffer we must
signal(itemAvailable)

after we extract an item from the buffer we must
signal(spaceAvailable)

slide 7
gaius

Semaphores and a shared buffer

what are their initial values for an empty buffer?
for simplicity let us assume the buffer can hold four characters
itemAvailable 0

spaceAvailable 3

this buffer mechanism is known as Dijkstra’s bounded buffer after its
author E.W. Dijkstra who discovered the algorithm in 1960s

slide 8
gaius

Completed implementation of a shared buffer using
semaphores

void put (char ch) char get (void)

{ {

wait(spaceAvailable) wait(itemAvailable)

wait(mutex) wait(mutex)

(* safe to alter *) (* safe to alter *)

(* buffer *) (* buffer *)

place ch into buf remove ch from buf

signal(mutex) signal(mutex)

signal(itemAvailable) signal(spaceAvailable)

return ch;

} }

char buffer[Max]; (* global data *)

SEMAPHORE mutex; (* global data *)

slide 9
gaius

Completed implementation of a shared buffer using
semaphores

if one process keeps callingput and another process callsget we see
that both processes are synchronising against taking data from an
empty buffer and also from putting data into a full buffer

slide 10
gaius

Readers and writers problem and semaphores

another common classic problem in operating systems is solving the
readers/writers problem

here the problem is defined as some common resource needs to be
protected such that

multiple readers can read from the resource simultaneously
only one writer can write to the resource at a time
a writer must wait for all readers to finish reading before it can
alter the resource

slide 11
gaius

Readers and writers problem and semaphores

how to solve this with the minimal amount of semaphores?

this problem is common amoung databases or game servers

we use amutex semaphore to protect the other data structures used in
our lock

we use another semaphorewriters to queue multiple writers trying to
access the shared resource

we use an integer count to count the number of readers reading from
the resourcereadcount

slide 12
gaius

Readers and writers problem and semaphores

the writer processes can be implemented by:

writers = semaphore (value = 1)

while True:

...

wait(writers)

the process can now write to the shared resource

signal(writers)

...

slide 13
gaius

Readers and writers problem and semaphores

the reader process can be implemented by:

slide 14
gaius

Readers and writers problem and semaphores

mutex = semaphore (value = 1)

readcount = 0

while True:

...

wait(mutex)

readcount = readcount+1

if readcount == 1: # first reader waits as a writer

wait(writers)

signal(mutex)

reader can read the shared resource

wait(mutex)

readcount = readcount-1

if readcount == 0: # last reader signals as a writer

signal(writers)

signal(mutex)

...

slide 15
gaius

Interprocess communication: Message passing

message passing is another form of Interprocess Communication

it allows processes to communicate and to synchronise their actions
without sharing the same address space

a message passing facility provides at least two operations
send(message) andreceive(message)

some message passing libraries allow for variable sized data to be
sent/received and other allow a fixed amount of data to be send/received

tradoffs between complexity of implementation of the library and
complexity of the user program

slide 16
gaius

Interprocess communication: Message passing

the message passing libraries also may be further complicated by how a
process addresses another process

consider

send(P, message) # send a message to process P

received(Q, message) # receive a message from process Q

we describe these primitives as having symmetry in addressing
that is both processes need to know the name of the other to
receive and send a message

slide 17
gaius

Interprocess communication: Message passing

other library implementations might use asymmetric naming for
process addressing, consider:

send(P, message) # sends a message to process P

receive(id, message) # receive a message from any process,

id will contain the processes, name

slide 18
gaius

Conclusion

we have seen how semaphores can be used to solve some classic
computer science problems

readers/writers and shared buffer

we have explored the message passing paradigm

