
slide 1
gaius

Embedded systems

there are many times an IBM-PC is an overkill
solution

an IBM-PC is a general purpose computer,
sometimes a more specific computer is cost effective

a specific computer executing a specific operating
system might be the solution and in a minimal case
we might choose to use an embedded operating
system

or embedded system if we include the
application

slide 2
gaius

Characteristics of an embedded system

these systems can be tiny
could be < 1KBytes

only use software which you need
for example many times it is possible to
implement an embedded system using no
interrupts
choice, it might be

easier to implement
guarentee a hard realtime performance for
time critical applications

slide 3
gaius

Case examples: embedded systems built
using the ATMega328p

we will look at building a basic computer running a
tiny embedded system

flashing LED program

many, many other examples in which the
ATMega328p can be used

network on/off switch
cruise controller for an electic bicycle
amplifier controller
tiny web server and LCD panel
Arduino!

slide 4
gaius

Why use ATMega processsors?

support withingcc in mature (it has support ATMega
microprocessors for about two decades)

the ATMega series of microprocessors have very
similar instructions

harvard risc architecture



slide 5
gaius

Atmel ATMega series of microprocessors

the number of components to make a minimal system
is tiny

they are also extremely easy to interface to
peripherals

A->D, D->A, pwm (servo and motor control) etc
multiple hardware timers etc

slide 6
gaius

Atmel 328p

is an 8-bit AVR RISC-based microcontroller (some of
its features include):

32KB flash memory
1024B EEPROM, 2KB SRAM

23 general purpose I/O lines
32 general purpose working registers
three flexible timer/counters with compare
modes
internal/external interrupts, a 6-channel 10-bit
A/D converter
programmable watchdog timer with internal
oscillator
2 PWM channels (ie control two servos) in
hardware

many features omitted for sake of brevity

slide 7
gaius

Simple computer flashing a LED with the
ATMega328p

1

2

3

4

5

6

7

8

9

10

11

12

13

14

27

26

25

24

23

22

21

20

19

18

17

16

15

1K

10K

10uF

28

GND

SCK

MISO

MOSI

RESET

+5V

ATMega328P

slide 8
gaius

Code for the flashing LED

MODULE flashled ;

PROCEDURE Turn (on: BOOLEAN) ;

BEGIN

IF on

THEN

(* turn LED on *)

ASM VOLATILE ("cbi 8,5");

ELSE

(* turn LED off *)

ASM VOLATILE ("sbi 8,5");

END

END Turn ;

(*

InitLed - initialize pin 0 as an output

*)

PROCEDURE InitLed ;

BEGIN

ASM VOLATILE ("sbi 7,5")

END InitLed ;



slide 9
gaius

Code for the flashing LED

CONST

Delay = 400 ;

VAR

i, j: CARDINAL ;

slide 10
gaius

Code for the flashing LED

BEGIN

InitLed ;

Turn(FALSE) ;

LOOP

FOR i := 0 TO Delay DO

FOR j := 0 TO Delay DO

ASM VOLATILE ("nop")

END

END ;

Turn(TRUE) ;

FOR i := 0 TO Delay DO

FOR j := 0 TO Delay DO

ASM VOLATILE ("nop")

END

END ;

Turn(FALSE)

END

END flashled.

slide 11
gaius

Cruise controller for an electric bicycle

uses PWM device to control the power delivered to
the electric motor

uses a A to D device to take input from the throttle
(potentiometer)

uses several output pins to control status LEDs

uses input pins for wheel movement sensing

due to the hardware support inside the Atmega328p
the software is extremely simple

no need for interrupt service routines
no need for separate processes

slide 12
gaius

Amplifier control embedded system

uses the Atmega328p to
turn on the +-12v power
turn on the +-9v power
connect the speakers after 2 seconds (speaker
protection)
uses the A to D device to take input from a
potentiometer to select input source



slide 13
gaius

Amplifier control embedded system

uses input lines to detect push button
three pulses turns it off
two pulses turns off the speakers
one pulse resets the power save timer

software is a simple C program which controls
hardware directly

slide 14
gaius

Conclusion

embedded systems come in many sizes and the
examples given here are tiny applications

embedded systems might range up to and including
the Linux kernel (with various scheduling and device
driver changes)


