
slide 1
gaius

Taxonomy of client/server architectures

so far we have looked at a simple TCP server/client and a simple UDP
server/client

this week we will further classify these servers

first we will examine the pros and cons of the TCP and UDP
server/clients



slide 2
gaius

The pros/cons for a TCP client server

pro connection is reliable

pro reasonably efficient for sending medium/large amounts of data

con requires packets to be sent (overhead) to setup the connection and
close the connection

con inefficient to send tiny amounts of data



slide 3
gaius

The pros/cons for a UDP client server

pro simpler than the TCP counterpart

pro very efficient for sending tiny amounts of data

pro no connection is created by UDP, hence less overhead

con it uses the UDP transport thus data might be scrambled or lost in
transit

connectionless transport characteristics

con you have to manage the unreliable nature of the connection
yourself

examples NFS, VoIP



slide 4
gaius

Returning to the basic server algorithm for TCP or
UDP

conceptually each server follows a simple algorithm, expressed in
pseudo code:

it creates a socket
binds the socket to a well known port
loop

accept the next client
request from this port

serve this request
formulate a reply
send the reply to client

end



slide 5
gaius

Problems with the simple server?

unfortunately this is only good enough for simple applications

consider a service requiring considerable time to handle each request
example suppose a file transfer client server were implemented like
this!
one user requests a huge file
moments later another user might wish to transfer a small file



slide 6
gaius

Problems with the simple server?

the second user has to wait a considerable time just to transfer a small
file

the second user isblocked until the first user has finished with the
server

thus servers are seldom built like this



slide 7
gaius

Taxonomy of client/server architecture

first on the list in our taxonomy of client servers is

iterative server (as we have just seen)
used to describe a server implementation that processes one
request at a time



slide 8
gaius

Taxonomy of client/server architecture

second on the list in our taxonomy of client servers is a

concurrent server
used to describe a server that handles multiple requests at a time

best viewed from the client perspective
the server appears to communicate with multiple clients
concurrently.

the term concurrent server refers to whether the server handles
multiple requests concurrently, not to whether the underlying
implementation uses multiple concurrent processes



slide 9
gaius

Concurrent server pro/cons

concurrent servers are more difficult to design and build
the resulting code is more complex
difficult to modify

most programmers choose concurrent server implementations



slide 10
gaius

Iterative server pro/cons

cause unnecessary delays in distributed applications

may be a performance bottleneck that effects many client applications

iterative server implementations, which are easier to build and
understand, may result in poor performance because they make clients
wait for service. Whereas in contrast, concurrent server
implementations, which are more difficult to build, yield better
performance.



slide 11
gaius

Iterative server pro/cons

we can view these two categories across the TCP/UDP division below:

concurrent concurrent

connectionless connection oriented(UDP)

(TCP)

(TCP)

iterative iterative

connection orientedconnectionless (UDP)



slide 12
gaius

Pseudo code for the iterative connectionless server

create a socket and bind
to a well known address
for which a service is
being offered

loop
read next request from client
process the request
send reply back to client

end



slide 13
gaius

Pseudo code for the concurrent connectionless server

create a socket and bind
to the well known address
for the service being offered

leave the socket unconnected

loop
call recvfrom to obtain the

next client request
if (fork() == 0) {

/* child process. */
process the request
form a reply and send

it to client
(use sendto)
exit (0)

}
/* only the parent gets here. */

end



slide 14
gaius

Pseudo code for a concurrent connection oriented
server

create a socket and bind
it to the well known address
for the service being offered

place socket into passive mode
making it ready for use by
the server



slide 15
gaius

Pseudo code for a concurrent connection oriented
server

loop
call accept to receive the
next request from a client
if (fork() == 0) {

/* must be the child */
repeat

read request from client
process the request
form a reply and send

it to client
until client wishes to quit
close connection
exit (0)

}
/* only the parent gets here. */

end



slide 16
gaius

When to use each server type

iterative vs concurrent
iterative server is easier to design, implement and maintain
concurrent server can provide a quicker response to requests

use iterative implementation if
the time toprocess the requestis small



slide 17
gaius

When to use each server type

connection oriented vs connectionless
connection oriented access means using TCP

implies reliable delivery
because connectionless transport means using UDP

it implies unreliable delivery



slide 18
gaius

Conclusion

only use connectionless transport if the application protocol handles
reliability

or the local area network exhibits:
low packet loss
no packet reordering (very few do)

use connection oriented transport whenever
a wide area network separates client and server

never move a connectionless client and server to a wide area network
without checking to see if the application protocol handles the
reliability problems


