slide 1
gaus

GCC and tips

GNU Compiler Collection consists of malanguage
front ends to the gnu compiler

here we will look at some of the common options to
gcc andg++

these slides are simply a taster and huge
simplification of hev GCC might be used

slide 3
gaus

GCC debugging

turn on all warnings by:wall

so our command line to compitello.cis:

[$ gec —g -00 -Wall —c hello.c |

notice that this compilese11o. c but does not link
it

to link this we can:

‘S gcc —g hello.o

slide 2
gaus

GCC debugging

all front ends (in our casecc, g++ andgm2) accept
—-g -00 which tell the compiler not to optimize and
emit debugging information faydb

slide 4
gaus

GCC debugging

we could combine the last trgteps by:

[gcc —g —00 —wall hello.c

slide 5 slide 6
gaus gaus

B [5 gdb a.out ® no excuse for not using this program!
(gdb) break exit
(gdb) run
(gdb) quit

m it requires no effort to run youxecutable in valgrind

m set break points, single step code, finish functions,
invoke functions as necessary

u [$ valgrind ./a.out |

- B valgrindis a memory mismanagement detegdtor
o) hren bt can detect using memory which has not been

(gdb) print pf(t) allocated or has been freed
(gdb) next

(gdb) step
(gdb) finish

slide 7 slide 8
gaus gaus

hat iswrong with this code? algrind gives you a huge hint

u #include <stdlib.h> u $ valgrind ./a.out
==30984== Command: ./a.out
void myfunc (int n) ==30984==
{ ==30984== Invalid write of size 4
int* a = malloc(n * sizeof(int)); ==30984== at 0x400511: myfunc (bad.c:7)
==30984== by 0x400526: main (bad.c:12)
aln] = 0; ==30984== Address 0x518b04c is 0 bytes after a blgck of

}

int main ()
{
myfunc (3);
return 0;

}

slide 9
gaus

firstly profile your code to check if there are any
obvious inefficiencies

$ geec —g -00 -pg -c foo.c
$ gee —-g -pg foo.o

slide 11
gaus

run your program as before

[$./a.out

now invoke the profiler

‘$ gprof a.out

slide 10
gaus

again we could combine theseotraommands with

[$ gec —g —00 —pg foo.c |

most large projects will olve a dscrete compile
and link step

slide 12
gaus
Each sample counts as 0.0l seconds.

% cumulative self self total
time seconds seconds calls s/call s/cal
35.38 20.64 20.64 4771989280 0.00
25.59 35.56 14.93 1049864543 0.00
15.22 44.44 8.88 345772285 0.00 0

8.52 49.41 4.97 868833748 0.00 0

7.34 53.69 4.28 10274416 0.00 0.

we could choose to rewrite the functians, scan or

makemove

=

nam
.00 I
.00 s

00 1IN
0 eva

slide 13 slide 14
gaus gaus

M aking your code go even faster M aking your code go even faster

use options=01 or -02 or -03 on the command line m for detail as to which optimizations th&urn on use:
to gcc

u \$ gcc —c -Q -03 —-help=optimizers | grep enabled \

these optimizations may vary according to

rchi r .
architecture to see the difference between2 and-03 use:

u $ gee —¢ -Q -03 —-help=optimizers > /tmp/O3-opts
$ gee —¢ -Q -02 --help=optimizers > /tmp/O2-opts
$ diff /tmp/O2-opts /tmp/O3-opts | grep enabled

slide 15 slide 16
gaus gaus

M aking your code go even faster Size of code gener ated

if you dont need full compliant math code, you could B you can alays check the size of your code via:
use the-ffast-math option (which will inline
sin, cos, tan etc)

B [5 size a.out

$ geec -03 —-ffast-math -c foo.c
$ gcc -03 —-ffast-math foo.o

also optimize for space via the optieds

u $ gee -0s -c foo.c
$ gcc -Os foo.o

