
slide 1
gaius

GCC and tips

GNU Compiler Collection consists of many language
front ends to the gnu compiler

here we will look at some of the common options to
gcc andg++

these slides are simply a taster and huge
simplification of how GCC might be used

slide 2
gaius

GCC debugging

all front ends (in our case:gcc, g++ andgm2) accept
-g -O0 which tell the compiler not to optimize and
emit debugging information forgdb

slide 3
gaius

GCC debugging

turn on all warnings by:-Wall

so our command line to compilehello.c is:

$ gcc -g -O0 -Wall -c hello.c

notice that this compileshello.c but does not link
it

to link this we can:

$ gcc -g hello.o

slide 4
gaius

GCC debugging

we could combine the last two steps by:

$ gcc -g -O0 -Wall hello.c



slide 5
gaius

Debugging your code

$ gdb a.out
(gdb) break exit

(gdb) run

(gdb) quit

set break points, single step code, finish functions,
invoke functions as necessary

(gdb) print t

(gdb) break pf

(gdb) print pf(t)

(gdb) next

(gdb) step

(gdb) finish

slide 6
gaius

Valgrind

no excuse for not using this program!

it requires no effort to run your executable in valgrind

$ valgrind ./a.out

valgrind is a memory mismanagement detector, it
can detect using memory which has not been
allocated or has been freed

slide 7
gaius

What is wrong with this code?

#include <stdlib.h>

void myfunc (int n)

{

int* a = malloc(n * sizeof(int));

a[n] = 0;

}

int main ()

{

myfunc(3);

return 0;

}

slide 8
gaius

Valgrind gives you a huge hint

$ valgrind ./a.out
==30984== Command: ./a.out

==30984==

==30984== Invalid write of size 4

==30984== at 0x400511: myfunc (bad.c:7)

==30984== by 0x400526: main (bad.c:12)

==30984== Address 0x518b04c is 0 bytes after a block of size 12 alloc’d



slide 9
gaius

Making your program go faster

firstly profile your code to check if there are any
obvious inefficiencies

$ gcc -g -O0 -pg -c foo.c
$ gcc -g -pg foo.o

slide 10
gaius

Making your program go faster

again we could combine these two commands with

$ gcc -g -O0 -pg foo.c

most large projects will involve a discrete compile
and link step

slide 11
gaius

Making your program go faster

run your program as before

$ ./a.out

now inv oke the profiler

$ gprof a.out

slide 12
gaius

Making your program go faster

Each sample counts as 0.01 seconds.

% cumulative self self total

time seconds seconds calls s/call s/call name

35.38 20.64 20.64 4771989280 0.00 0.00 IN

25.59 35.56 14.93 1049864543 0.00 0.00 scan

15.22 44.44 8.88 345772285 0.00 0.00 makeMove

8.52 49.41 4.97 868833748 0.00 0.00 INCL

7.34 53.69 4.28 10274416 0.00 0.00 evaluate

we could choose to rewrite the functionsIN, scan or
makemove



slide 13
gaius

Making your code go even faster

use options:-O1 or -O2 or -O3 on the command line
to gcc

these optimizations may vary according to
architecture

slide 14
gaius

Making your code go even faster

for detail as to which optimizations they turn on use:

$ gcc -c -Q -O3 --help=optimizers | grep enabled

to see the difference between-O2 and-O3 use:

$ gcc -c -Q -O3 --help=optimizers > /tmp/O3-opts
$ gcc -c -Q -O2 --help=optimizers > /tmp/O2-opts
$ diff /tmp/O2-opts /tmp/O3-opts | grep enabled

slide 15
gaius

Making your code go even faster

if you don’t need full compliant math code, you could
use the-ffast-math option (which will inline
sin, cos, tan etc)

$ gcc -O3 -ffast-math -c foo.c
$ gcc -O3 -ffast-math foo.o

slide 16
gaius

Size of code generated

you can always check the size of your code via:

$ size a.out

also optimize for space via the option-Os

$ gcc -Os -c foo.c
$ gcc -Os foo.o


