
slide 1
gaius

Building on Lists

we will look at how our slist class can be extended
to include

length, reverse methods

use recursion and functional programming where
appropriate

we will notice a problem with C++ when applying
this technique

slide 2
gaius

Tutorial answers: length

firstly we add two helper methods to our classslist

c++/lists/single-list/int/slist.h

...

private:

element *e_tail (element *l);

int *e_length (element *l);

...

slide 3
gaius

e_tail

c++/lists/single-list/int/slist.cc

/*

* e_tail - given a list, l, return the list without the

* head element.

* pre-condition: non empty list.

* post-condition: return the list without the

* first element.

* The original list is unaltered.

*/

element *slist::e_tail (element *l)

{

return l->next;

}

slide 4
gaius

e_tail

c++/lists/single-list/int/slist.cc

/*

* e_length - return the length of element list, l.

*/

int slist::e_length (element *h)

{

if (h == 0)

return 0;

else

return (1 + e_length (e_tail (h)));

}



slide 5
gaius

e_tail

c++/lists/single-list/int/slist.cc

/*

* length - return the length of list, l.

*/

int slist::length (void)

{

return e_length (head_element);

}

slide 6
gaius

re verse

must return the list with its contents reversed
not a new list with a copy of the contents
reversed!

c++/lists/single-list/int/slist.cc

slist slist::reverse (void)

{

if (is_empty ())

return *this;

else

return tail ().reverse().cons (empty().cons (head ()));

}

slide 7
gaius

re verse

notice the use of recursion

notice thattail removes and deletes a datum

head obtains the first element

cons appends the first element to an empty list
ie creates a list with one element

this single element list is added to the end of the
reversed list

the reversed list comes from the tail of the
original list

slide 8
gaius

re verse

h e l l o

h

reverse



slide 9
gaius

cons (slist l)

c++/lists/single-list/int/slist.cc

/*

* cons - concatenate list, l, to the end of the current list.

* pre-condition : none.

* post-condition: returns the current list with a copy of

* contents of list, l, appended.

*/

slist slist::cons (slist l)

{

if (l.is_empty ())

return *this;

else

return cons (duplicate_elements (l.head_element));

}

slide 10
gaius

Recursive version of cons (slist l)

c++/lists/single-list/int/slist.cc

/*

* cons - concatenate list, l, to the end of the current list.

* pre-condition : none.

* post-condition: returns the current list with a copy of

* contents of list, l, appended.

*/

slist slist::cons (slist l)

{

if (l.is_empty ())

return *this;

else

{

int h = l.head (); // use h to force evaluation order

return cons (h).cons (l.tail ());

}

}

slide 11
gaius

Recursive version of cons (slist l)

notice thegotya
we must use a temporary variableh to contain an
intermediate result containing the result of
l.head()

it ensure that the call tohead occurs before
l.tail()

slide 12
gaius

Recursive version of cons (slist l)

if the code were re-written as:

c++/lists/single-list/int/slist.cc

slist slist::cons (slist l)

{

if (l.is_empty ())

return *this;

else

return cons (l.head()).cons (l.tail ());

}



slide 13
gaius

Recursive version of cons (slist l)

it would fail, asl.tail() is executed before
l.head()

slide 14
gaius

Further tutorial questions

write some test code to generate a large list and
perform reverse on the list several times

compare the execution time between the iterative
and recursive solutions
which is faster, why?

hint use-pg flags tog++ and analyse the execution
time withgprof

see week 1 notes for further hints on using the
compiler

slide 15
gaius

Further tutorial questions

enable debugging in theslist.cc file and watch
for the addresses of the new elements created and
deleted

when reverse is called - how many new elements are
created when the

recursive version is run
when the iterative version is run


