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Building on Lists

we will look at how our slist class can be extended
to include

length, reverse methods

use recursion and functional programming where
appropriate

we will notice a problem with C++ when applying
this technique
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Tutorial answers: length

firstly we add two helper methods to our classslist

c++/lists/single-list/int/slist.h

...

private:

element *e_tail (element *l);

int *e_length (element *l);

...
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e_tail

c++/lists/single-list/int/slist.cc

/*

* e_tail - given a list, l, return the list without the

* head element.

* pre-condition: non empty list.

* post-condition: return the list without the

* first element.

* The original list is unaltered.

*/

element *slist::e_tail (element *l)

{

return l->next;

}
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e_tail

c++/lists/single-list/int/slist.cc

/*

* e_length - return the length of element list, l.

*/

int slist::e_length (element *h)

{

if (h == 0)

return 0;

else

return (1 + e_length (e_tail (h)));

}
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e_tail

c++/lists/single-list/int/slist.cc

/*

* length - return the length of list, l.

*/

int slist::length (void)

{

return e_length (head_element);

}
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re verse

must return the list with its contents reversed
not a new list with a copy of the contents
reversed!

c++/lists/single-list/int/slist.cc

slist slist::reverse (void)

{

if (is_empty ())

return *this;

else

return tail ().reverse().cons (empty().cons (head ()));

}
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re verse

notice the use of recursion

notice thattail removes and deletes a datum

head obtains the first element

cons appends the first element to an empty list
ie creates a list with one element

this single element list is added to the end of the
reversed list

the reversed list comes from the tail of the
original list
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re verse

h e l l o

h

reverse
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cons (slist l)

c++/lists/single-list/int/slist.cc

/*

* cons - concatenate list, l, to the end of the current list.

* pre-condition : none.

* post-condition: returns the current list with a copy of

* contents of list, l, appended.

*/

slist slist::cons (slist l)

{

if (l.is_empty ())

return *this;

else

return cons (duplicate_elements (l.head_element));

}
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Recursive version of cons (slist l)

c++/lists/single-list/int/slist.cc

/*

* cons - concatenate list, l, to the end of the current list.

* pre-condition : none.

* post-condition: returns the current list with a copy of

* contents of list, l, appended.

*/

slist slist::cons (slist l)

{

if (l.is_empty ())

return *this;

else

{

int h = l.head (); // use h to force evaluation order

return cons (h).cons (l.tail ());

}

}
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Recursive version of cons (slist l)

notice thegotya
we must use a temporary variableh to contain an
intermediate result containing the result of
l.head()

it ensure that the call tohead occurs before
l.tail()
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Recursive version of cons (slist l)

if the code were re-written as:

c++/lists/single-list/int/slist.cc

slist slist::cons (slist l)

{

if (l.is_empty ())

return *this;

else

return cons (l.head()).cons (l.tail ());

}
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Recursive version of cons (slist l)

it would fail, asl.tail() is executed before
l.head()
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Further tutorial questions

write some test code to generate a large list and
perform reverse on the list several times

compare the execution time between the iterative
and recursive solutions
which is faster, why?

hint use-pg flags tog++ and analyse the execution
time withgprof

see week 1 notes for further hints on using the
compiler
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Further tutorial questions

enable debugging in theslist.cc file and watch
for the addresses of the new elements created and
deleted

when reverse is called - how many new elements are
created when the

recursive version is run
when the iterative version is run


