
slide 1
gaius

Stacks

the behaviour of stack methods are to:
push to the top of a stack
remove from the top of a stack, via pop

1

2

3

4

top of stack

stack_ptr



slide 2
gaius

Stacks

here we have

push(1)

push(2)

push(3)

push(4)

and then executing

i = pop()

yields the value 4 in i



slide 3
gaius

Stacks

and the stack now looks like this:

1

2

3
stack_ptr

top of stack

we note that stacks and lists are isomorphic



slide 4
gaius

Stacks

for example if we needed a stack of integers we could use our lecture 2
implementation of a single linked list

push(i) is equivalent to l.cons(i)

i = pop() is equivalent to i = l.head(); l = tail();

we might be tempted to conclude here :-)
however stacks are often used right at the center of many systems
and performance can be critical



slide 5
gaius

Stacks

it should be noted that the operations push and pop are expected to be
used very frequently



slide 6
gaius

Stack definition

examples/c++/stacks/int/v1/stack.h

class element

{

public:

element *next;

int data;

};

class stack

{

private:

element *head_element;

element *duplicate_elements (element *e);

element *delete_elements (void);

friend std::ostream& operator<< (std::ostream& os, const stack& l);



slide 7
gaius

Stack definition

examples/c++/stacks/int/v1/stack.h

public:

stack (void);

˜stack (void);

stack (const stack &from);

stack& operator= (const stack &from);

stack empty (void);

bool is_empty (void);

stack push (int i);

int top (void);

int pop (void);

};



slide 8
gaius

Stack definition

notice its similarity to the single linked list class



slide 9
gaius

Stack definition

examples/c++/stacks/int/v1/stack.cc

/*

* push - push i to stack.

* pre-condition: none.

* post-condition: returns the stack which has i at its head

* and the remainer of contents as, stack.

*/

stack stack::push (int i)

{

element *e = new element;

e->data = i;

e->next = head_element;

head_element = e;

return *this;

}



slide 10
gaius

Stack definition

examples/c++/stacks/int/v1/stack.cc

/*

* pop - opposite of cons. Remove the head value and return it.

* pre-condition: non empty stack.

* post-condition: remove and return value from top of stack.

*/

int stack::pop (void)

{

element *e = head_element;

int value = e->data;

assert (! is_empty());

head_element = head_element->next;

if (debugging)

printf ("wanting to delete 0x%p0, e);

else

delete e;

return value;

}



slide 11
gaius

Version 2: Stack

notice that if push and pop are used many times when we will have
many calls to new and delete

these last two functions may be very costly, as they are generic for
any data type
probably using complex memory management algorithms

given that push and pop occur so frequenty we will maintain our own
free list



slide 12
gaius

Version 2: Stack

examples/c++/stacks/int/v2/stack.h

class stack

{

private:

element *head_element;

element *free_list;

element *duplicate_elements (element *e);

element *delete_elements (element *h);

friend std::ostream& operator<< (std::ostream& os, const stack& l);

element *new_element (void);

void delete_element (element *e);



slide 13
gaius

Version 2: Stack

examples/c++/stacks/int/v2/stack.h

public:

stack (void);

˜stack (void);

stack (const stack &from);

stack& operator= (const stack &from);

stack empty (void);

bool is_empty (void);

stack push (int i);

int top (void);

int pop (void);

};



slide 14
gaius

Version 2: Stack

examples/c++/stacks/int/v2/stack.cc

/*

* delete_elements - delete all elements of stack.

* pre-condition : none.

* post-condition: all elements are deleted

* and zero is returned.

*/

element *stack::delete_elements (element *h)

{

while (h != 0) {

element *t = h;

h = h->next;

if (debugging)

printf ("wanting to delete 0x%p\n", t);

else

delete t;

}

return 0;

}



slide 15
gaius

Version 2: Stack

examples/c++/stacks/int/v2/stack.cc

/*

* delete_element - pre-condition : e, must not be on the stack.

* post-condition: places, e, onto the free_list.

*/

void stack::delete_element (element *e)

{

e->next = free_list;

free_list = e;

}



slide 16
gaius

Version 2: Stack

examples/c++/stacks/int/v2/stack.cc

/*

* new_element - pre-condition : none.

* post-condition: return an element either

* from the free_list or from the heap.

*/

element *stack::new_element (void)

{

element *e;

if (free_list == 0)

e = new element;

else

{

e = free_list;

free_list = free_list->next;

}

return e;

}



slide 17
gaius

Version 2: Stack

examples/c++/stacks/int/v2/stack.cc

/*

* push - push i to stack.

* pre-condition: none.

* post-condition: returns the stack which has i at its head

* and the remainer of contents as, stack.

*/

stack stack::push (int i)

{

element *e = new_element ();

e->data = i;

e->next = head_element;

head_element = e;

return *this;

}



slide 18
gaius

Version 2: Stack

examples/c++/stacks/int/v2/stack.cc

/*

* pop - opposite of cons. Remove the head value and return it.

* pre-condition: non empty stack.

* post-condition: remove and return value from top of stack.

*/

int stack::pop (void)

{

element *e = head_element;

int value = e->data;

assert (! is_empty());

head_element = head_element->next;

if (debugging)

printf ("wanting to delete 0x%p\n", e);

else

delete_element (e);

return value;

}



slide 19
gaius

Version 2: deconstructor

examples/c++/stacks/int/v2/stack.cc

/*

* ˜stack - deconstructor, releases the memory attached to the stack.

* pre-condition: none.

* post-condition: stack is empty.

*/

stack::˜stack (void)

{

head_element = delete_elements (head_element);

free_list = delete_elements (free_list);

}



slide 20
gaius

Version 2: copy

examples/c++/stacks/int/v2/stack.cc

/*

* copy operator - redefine the copy operator.

* pre-condition : a stack.

* post-condition: a copy of the stack and its elements.

*/

stack::stack (const stack &from)

{

head_element = duplicate_elements (from.head_element);

free_list = 0;

}



slide 21
gaius

Version 2: assignment

examples/c++/stacks/int/v2/stack.cc

/*

* operator= - redefine the assignment operator.

* pre-condition : a stack.

* post-condition: a copy of the stack and its elements.

* We delete ’this’ stacks elements.

*/

stack& stack::operator= (const stack &from)

{

if (this->head_element == from.head_element)

return *this;

head_element = delete_elements (head_element);

head_element = duplicate_elements (from.head_element);

free_list = 0;

}



slide 22
gaius

Version 2: constructor

examples/c++/stacks/int/v2/stack.cc

/*

* stack - constructor, builds an empty stack.

* pre-condition: none.

* post-condition: stack is created and is empty.

* free_list is empty.

*/

stack::stack (void)

: head_element(0), free_list(0)

{

}


