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Stacks

the behaviour of stack methods are to:
push to the top of a stack
remove from the top of a stack, via pop
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Stacks

here we have

push(1)

push(2)

push(3)

push(4)

and then executing

i = pop()

yields the value 4 in i
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Stacks

and the stack now looks like this:
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stack_ptr

top of stack

we note that stacks and lists are isomorphic
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Stacks

for example if we needed a stack of integers we could use our lecture 2
implementation of a single linked list

push(i) is equivalent to l.cons(i)

i = pop() is equivalent to i = l.head(); l = tail();

we might be tempted to conclude here :-)
however stacks are often used right at the center of many systems
and performance can be critical
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Stacks

it should be noted that the operations push and pop are expected to be
used very frequently
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Stack definition

examples/c++/stacks/int/v1/stack.h

class element

{

public:

element *next;

int data;

};

class stack

{

private:

element *head_element;

element *duplicate_elements (element *e);

element *delete_elements (void);

friend std::ostream& operator<< (std::ostream& os, const stack& l);
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Stack definition

examples/c++/stacks/int/v1/stack.h

public:

stack (void);

˜stack (void);

stack (const stack &from);

stack& operator= (const stack &from);

stack empty (void);

bool is_empty (void);

stack push (int i);

int top (void);

int pop (void);

};
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Stack definition

notice its similarity to the single linked list class
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Stack definition

examples/c++/stacks/int/v1/stack.cc

/*

* push - push i to stack.

* pre-condition: none.

* post-condition: returns the stack which has i at its head

* and the remainer of contents as, stack.

*/

stack stack::push (int i)

{

element *e = new element;

e->data = i;

e->next = head_element;

head_element = e;

return *this;

}
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Stack definition

examples/c++/stacks/int/v1/stack.cc

/*

* pop - opposite of cons. Remove the head value and return it.

* pre-condition: non empty stack.

* post-condition: remove and return value from top of stack.

*/

int stack::pop (void)

{

element *e = head_element;

int value = e->data;

assert (! is_empty());

head_element = head_element->next;

if (debugging)

printf ("wanting to delete 0x%p0, e);

else

delete e;

return value;

}
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Version 2: Stack

notice that if push and pop are used many times when we will have
many calls to new and delete

these last two functions may be very costly, as they are generic for
any data type
probably using complex memory management algorithms

given that push and pop occur so frequenty we will maintain our own
free list
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Version 2: Stack

examples/c++/stacks/int/v2/stack.h

class stack

{

private:

element *head_element;

element *free_list;

element *duplicate_elements (element *e);

element *delete_elements (element *h);

friend std::ostream& operator<< (std::ostream& os, const stack& l);

element *new_element (void);

void delete_element (element *e);
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Version 2: Stack

examples/c++/stacks/int/v2/stack.h

public:

stack (void);

˜stack (void);

stack (const stack &from);

stack& operator= (const stack &from);

stack empty (void);

bool is_empty (void);

stack push (int i);

int top (void);

int pop (void);

};
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Version 2: Stack

examples/c++/stacks/int/v2/stack.cc

/*

* delete_elements - delete all elements of stack.

* pre-condition : none.

* post-condition: all elements are deleted

* and zero is returned.

*/

element *stack::delete_elements (element *h)

{

while (h != 0) {

element *t = h;

h = h->next;

if (debugging)

printf ("wanting to delete 0x%p\n", t);

else

delete t;

}

return 0;

}
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Version 2: Stack

examples/c++/stacks/int/v2/stack.cc

/*

* delete_element - pre-condition : e, must not be on the stack.

* post-condition: places, e, onto the free_list.

*/

void stack::delete_element (element *e)

{

e->next = free_list;

free_list = e;

}
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Version 2: Stack

examples/c++/stacks/int/v2/stack.cc

/*

* new_element - pre-condition : none.

* post-condition: return an element either

* from the free_list or from the heap.

*/

element *stack::new_element (void)

{

element *e;

if (free_list == 0)

e = new element;

else

{

e = free_list;

free_list = free_list->next;

}

return e;

}
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Version 2: Stack

examples/c++/stacks/int/v2/stack.cc

/*

* push - push i to stack.

* pre-condition: none.

* post-condition: returns the stack which has i at its head

* and the remainer of contents as, stack.

*/

stack stack::push (int i)

{

element *e = new_element ();

e->data = i;

e->next = head_element;

head_element = e;

return *this;

}
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Version 2: Stack

examples/c++/stacks/int/v2/stack.cc

/*

* pop - opposite of cons. Remove the head value and return it.

* pre-condition: non empty stack.

* post-condition: remove and return value from top of stack.

*/

int stack::pop (void)

{

element *e = head_element;

int value = e->data;

assert (! is_empty());

head_element = head_element->next;

if (debugging)

printf ("wanting to delete 0x%p\n", e);

else

delete_element (e);

return value;

}
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Version 2: deconstructor

examples/c++/stacks/int/v2/stack.cc

/*

* ˜stack - deconstructor, releases the memory attached to the stack.

* pre-condition: none.

* post-condition: stack is empty.

*/

stack::˜stack (void)

{

head_element = delete_elements (head_element);

free_list = delete_elements (free_list);

}
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Version 2: copy

examples/c++/stacks/int/v2/stack.cc

/*

* copy operator - redefine the copy operator.

* pre-condition : a stack.

* post-condition: a copy of the stack and its elements.

*/

stack::stack (const stack &from)

{

head_element = duplicate_elements (from.head_element);

free_list = 0;

}
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Version 2: assignment

examples/c++/stacks/int/v2/stack.cc

/*

* operator= - redefine the assignment operator.

* pre-condition : a stack.

* post-condition: a copy of the stack and its elements.

* We delete ’this’ stacks elements.

*/

stack& stack::operator= (const stack &from)

{

if (this->head_element == from.head_element)

return *this;

head_element = delete_elements (head_element);

head_element = duplicate_elements (from.head_element);

free_list = 0;

}
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Version 2: constructor

examples/c++/stacks/int/v2/stack.cc

/*

* stack - constructor, builds an empty stack.

* pre-condition: none.

* post-condition: stack is created and is empty.

* free_list is empty.

*/

stack::stack (void)

: head_element(0), free_list(0)

{

}


