
slide 1

gaius

Programming Proverbs

19. ‘‘Prettyprint - format your code so that it looks nice.’’

Henry F. Ledgard, ‘‘Programming Proverbs: Principles of Good

Programming with Numerous Examples to Improve Programming

Style and Proficiency’’, (Hayden Computer Programming Series),

Hayden Book Company, 1st edition, ISBN-13: 978-0810455221,

December 1975.

slide 2

gaius

PGE, libtool and passing aggregate data between
Python/C++

examine the file pge/c/Makefile.am

notice the rule starting with the text

libpgeif.la: this rule generates the library libpgeif.la

using a variant of the command given on the previous slides

slide 3

gaius

PGE, libtool and passing aggregate data between
Python/C++

swig -outdir . -o pgeif_wrap.cxx -c++ -python $(top_srcdir)/i/pgeif.i

$(LIBTOOL) --tag=CC --mode=compile g++ -g -c pgeif_wrap.cxx \

-I/usr/include/python$(PYTHON_VERSION) -o pgeif_wrap.lo

gm2 -c -g -I$(SRC_PATH_PIM) -fcpp -fmakelist \

-I$(top_srcdir)/m2 $(top_srcdir)/m2/pgeif.mod

gm2 -c -g -I$(SRC_PATH_PIM) -fcpp -fmakeinit -fshared \

-I$(top_srcdir) $(top_srcdir)/m2/pgeif.mod

$(LIBTOOL) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) \

--mode=compile gcc -c $(CFLAGS_FOR_TARGET) $(LIBCFLAGS) \

$(libgm2_la_M2FLAGS) $(srcdir)/pgeif.c -o pgeif.lo

$(LIBTOOL) --tag=CC --mode=compile g++ -g -c _m2_pgeif.cpp -o _m2_pgeif.lo

$(LIBTOOL) --tag=CC --mode=link gcc -g _m2_pgeif.lo $(MY_DEPS) \

pgeif_wrap.lo \

-L$(GM2LIBDIR)/lib64 \

-rpath ‘pwd‘ -liso -lgcc -lstdc++ -lpth -lc -lm -o libpgeif.la

cp .libs/libpgeif.so ../_pgeif.so

cp pgeif.py ../pgeif.py

slide 4

gaius

More complex example

passing data from Python into C, C++, Modula-2 shared library

can pass int, float, double and enums easily enough

strings are also reasonably well supported

how do we pass aggregate data types between Python and C/C++?

how do we return aggregate from C/C++ into Python?

slide 5

gaius

Aggregate data types

an aggregate data type is a data type which contains different sub types

for example a struct containing an int and a char field

typedef struct aggregate_t {

int field1;

char field2;

} aggregate;

slide 6

gaius

Passing aggregate data types from Python into C/C++

fortunately binary strings of data can be passed between Python and

C/C++ using swig

we can build a sequence of bytes using the Python struct module

the struct module uses a printf formatting structure to pack and

unpack binary data

slide 7

gaius

Why do we need to pass aggregate data types from
C/C++ to Python?

consider, pge, the shared library module generate events which might

be:

a draw frame event

a collision event

a timer event

the draw frame event

contains a list of polygons and circles and their position and colour

which need to be rendered to represent the world

this is a dynamic list of objects containing many different data

types

slide 8

gaius

Why do we need to pass aggregate data types from
C/C++ to Python?

a collision event

contains the time of collision, position of the collision

and the object ids in collision

this will be a fixed aggregate structure of known length

the timer event will have a time field (double) and the timer id

(integer) as well as a few other fields

this is also fixed in length and represented in C as a struct

slide 9

gaius

Passing aggregate data from C, C++, Modula-2 into
Python

we can use the string passing mechanism to pass bytes

the .i file needs extra information to say which functions return

binary data and also that the shared library can set the length

pge/i/pgeif.i

...

%include cstring.i

%cstring_output_allocate_size(char **s, int *slen,);

%{

extern "C" void get_cbuf (char **s, int *slen);

extern "C" void get_ebuf (char **s, int *slen);

extern "C" void get_fbuf (char **s, int *slen);

...

slide 10

gaius

Passing aggregate data from C, C++, Modula-2 into
Python

notice that a Python string is created in the shared library and passed

back to the Python caller

also notice that get_cbuf is a function!

returning a string

the swig information

%include cstring.i

%cstring_output_allocate_size(char **s, int *slen,);

indicates these types and name match a return string allocated in the

shared library

slide 11

gaius

Passing aggregate data from C, C++, Modula-2 into
Python

pge/python/pge.py

def runbatch (t):

if t < 0.0:

t = 30.0

_debugf ("runbatch (%f)\n", t)

pgeif.check_objects ()

cData = pgeif.get_cbuf ()

fData = pgeif.get_fbuf ()

_draw_frame (cData, len (cData), fData, len (fData))

pgeif.empty_fbuffer ()

pgeif.empty_cbuffer ()

slide 12

gaius

Passing aggregate data from C, C++, Modula-2 into
Python

swig has many mechanisms to allow binary strings of data to be

retrieved

above is the safest - as it contains the length

slide 13

gaius

PGE structure

deviceGroff

twoDsim

Roots

Fractions

pgeif

Snooker (or other game application)

C/C++/Modula-2

Pythonpge

devicePygame

slide 14

gaius

Passing aggregate data from C, C++, Modula-2 into
Python

examine the function _draw_frame which calls the function

pge/python/pge.py

#

_pyg_draw_frame - draws a frame on the pygame display.

#

def _pyg_draw_frame (cdata, clength, fdata, flength):

global nextFrame, call, _record

slide 15

gaius

Passing aggregate data from C, C++, Modula-2 into
Python

pge/python/pge.py

if _record:

_begin_record_frame (cdata, clength, fdata, flength)

elif flength > 0:

_draw_background ()

f = _myfile (cdata + fdata)

while f.left () >= 3:

header = struct.unpack ("3s", f.read (3))[0]

header = header[:2]

if call.has_key (header):

f = call[header] (f)

else:

print "not understood header =", header

sys.exit (1)

slide 16

gaius

Passing aggregate data from C, C++, Modula-2 into
Python

pge/python/pge.py

if flength > 0:

_draw_foreground ()

if _record:

_end_record_frame ()

if flength > 0:

_doFlipBuffer () # flipping the buffer for an empty frame looks ugly

nextFrame += 1

_debugf ("moving onto frame %d\n", nextFrame)

slide 17

gaius

Inside the shared library

it creates the byte string containing aggregate data

slide 18

gaius

Inside the shared library

pge/c/buffers.c

/*

* buffers - wrap the event buffer contents into a binary string.

*/

extern void deviceIf_getFrameBuffer (void **start,

int *length, int *used);

void get_fbuf (void **start, unsigned int *used)

{

int length;

#if !defined (DEBUGGING)

printf ("calling deviceIf_getFrameBuffer\n");

#endif

deviceIf_getFrameBuffer (start, &length, used);

}

slide 19

gaius

Inside the shared library

examine the file pge/c/deviceIf.c

follow the functions: deviceIf_emptyFbuffer,

deviceIf_useBuffer and deviceIf_finish

notice the use of the module MemStream

read the documentation of MemStream 〈http://
nongnu.org/gm2/gm2-libs-isomemstream.html〉

MemStream allows the caller to use file operations to maintain a byte

string which is contiguous and held in memory

slide 20

gaius

Conclusion and pgeif.i

the full API describing the C interface is described in

pge/i/pgeif.i

examine this file and see how a circle, colour and box are

created

now read the file pge/python/pge.py and see how a call to box

and colour is mapped into the pgeif.i calls

