slide 1
gaius

Programming

m 19. “Prettyprint - format your code so that it looks nice.”

m Henry F Ledgard, “Programming Proverbs: Principles of Good
Programming with Numerous Examples to Improve Programming
Style and Proficiency”, (Hayden Computer Programming Series),
Hayden Book Company, 1st edition, ISBN-13: 978-0810455221,

December 1975.

slide 2
gaius

PGE, libtool and passing aggregate data between

Python/C++

m examine the file pge/c/Makefile.am
= notice the rule starting with the text
w libpgeif.la: this rule generates the library 1ibpgeif.la
using a variant of the command given on the previous slides

slide 3
gaius

PGE, libtool and passing aggregate data between

Python/C++

swig —outdir . -o pgeif_wrap.cxx —-c++ —-python $(top_srcdir)/i/pgeif.i
$(LIBTOOL) --tag=CC —--mode=compile g++ —-g —-c pgeif_wrap.cxx \
—-I/usr/include/python$ (PYTHON_VERSION) -o pgeif_wrap.lo
gm2 —-c —-g —-I$(SRC_PATH_PIM) -fcpp —-fmakelist \
-I$(top_srcdir)/m2 $(top_srcdir)/m2/pgeif.mod
gm2 —-c —-g —-I$(SRC_PATH_PIM) -fcpp —-fmakeinit -fshared \
-I$(top_srcdir) $(top_srcdir)/m2/pgeif.mod
$(LIBTOOL) --tag=CC $(AM_LIBTOOLFLAGS) $(LIBTOOLFLAGS) \
—-mode=compile gcc —-c $(CFLAGS_FOR_TARGET) $(LIBCFLAGS) \
$(libgm2_la_M2FLAGS) $ (srcdir)/pgeif.c —-o pgeif.lo
$ (LIBTOOL) --tag=CC —--mode=compile g++ -g -c _m2_pgeif.cpp -o _m2_pgeif.lo
$(LIBTOOL) --tag=CC —--mode=link gcc -g _m2_pgeif.lo $(MY_DEPS) \
pgeif_wrap.lo \
-L$ (GM2LIBDIR) /1ib64 \
-rpath ‘pwd' -liso -lgcc -lstdc++ —-lpth -lc -1lm -o libpgeif.la
cp .libs/libpgeif.so ../_pgeif.so
cp pgeif.py ../pgeif.py

slide 4
gaius

More complex example

B passing data from Python into C, C++, Modula-2 shared library
can pass int, float, double and enums easily enough

B strings are also reasonably well supported

m how do we pass aggregate data types between Python and C/C++?
how do we return aggregate from C/C++ into Python?

slide 5
gaius

Agoregate data types

B an aggregate data type is a data type which contains different sub types
for example a struct containing an int and a char field

o typedef struct aggregate_t {
int fieldl;
char field2;

} aggregate;

slide 6
gaius

nes from Python into C/C++

m fortunately binary strings of data can be passed between Python and
C/C++ using swig

m we can build a sequence of bytes using the Python st ruct module
the st ruct module uses a printf formatting structure to pack and
unpack binary data

slide 7
gaius

Why do we need to pass aggregate data types from

C/C++ to Python?

m consider, pge, the shared library module generate events which might
be:
a draw frame event
a collision event
a timer event

m the draw frame event
contains a list of polygons and circles and their position and colour
which need to be rendered to represent the world
this 1s a dynamic list of objects containing many different data

types

slide 8
gaius

Why do we need to pass aggregate data types from

C/C++ to Python?

a collision event
= contains the time of collision, position of the collision
w and the object ids in collision

this will be a fixed aggregate structure of known length

the timer event will have a time field (double) and the timer id
(integer) as well as a few other fields
w this is also fixed in length and represented in C as a struct

slide 9
gaius

Passing aggregate data from C, C++, Modula-2 into

Python

B we can use the string passing mechanism to pass bytes
=m the .1i file needs extra information to say which functions return
binary data and also that the shared library can set the length

H poge/i/pgeif.i

%include cstring.i
%cstring_output_allocate_size(char **s, int *slen,);

% {

extern "C" void get_cbuf (char **s, int *slen);
extern "C" void get_ebuf (char **s, int *slen);
extern "C" void get_fbuf (char **s, int *slen);

slide 10
gaius

Passing aggregate data from C, C++, Modula-2 into

Python

notice that a Python string is created in the shared library and passed
back to the Python caller

also notice that get_cbuf is a function!
w returning a string

the swig information

%include cstring.i
%$cstring_output_allocate_size(char **s, int *slen,);

indicates these types and name match a return string allocated in the
shared library

slide 11
gaius

Passing aggregate data from C, C++, Modula-2 into

Python

pge/python/pge.py

def runbatch (t):
if t < 0.0:

t = 30.0
_debugf ("runbatch
pgeif.check_objects
chata =
fData =
_draw_frame (cData,
pgeif.empty_fbuffer
pgeif.empty_cbuffer

(5£) \n",

()

pgeif.get_cbuf
pgeif.get_fbuf

len

()
0

t)

()
()
(chata),

fData,

len

(fData))

slide 12
gaius

Passing aggregate data from C, C++, Modula-2 into
Python

B swig has many mechanisms to allow binary strings of data to be
retrieved
m above is the safest - as it contains the 1ength

PGE structure

Snooker (or other game application)

pge
pgeif
twoDsim Fractions
deviceGroff devicePygame Roots

slide 13
gaius

Python

C/C++/Modula-2

slide 14
gaius

Passing aggregate data from C, C++, Modula-2 into
Python

m examine the function draw frame which calls the function

| pge/python/pge.py

#
_pyg_draw_frame - draws a frame on the pygame display.
#

def _pyg _draw_frame (cdata, clength, fdata, flength):
global nextFrame, call, _record

slide 15
gaius

Passing aggregate data from C, C++, Modula-2 into

Python

pge/python/pge.py

if _record:
_begin_record_frame (cdata, clength, fdata, flength)

elif flength > 0O:
_draw_background ()

f = _myfile (cdata + fdata)
while f.left () >= 3:
header = struct.unpack ("3s", f.read (3)) [0]

header = header|[:2]
if call.has_key (header):
f = calll[header] (f)

else:
print "not understood header =", header

sys.exit (1)

slide 16
gaius

Passing aggregate data from C, C++, Modula-2 into

Python

pge/python/pge.py

if flength > O:
_draw_foreground ()

if _record:
_end_record_frame ()

if flength > O0:
_doFlipBuffer () # flipping the buffer for an empty frame looks ugly

nextFrame += 1

_debugf ("moving onto frame %d\n", nextFrame)

slide 17
gaius

Inside the shared librar

m it creates the byte string containing aggregate data

slide 18
gaius

Inside the shared librar

pge/c/buffers.c

/*

* buffers - wrap the event buffer contents into a binary string.
*/
extern void devicelIf_ getFrameBuffer (void **start,
int *length, int *used);

void get_fbuf (void **start, unsigned int *used)
{

int length;
#if !defined (DEBUGGING)

printf ("calling deviceIf_getFrameBuffer\n");
#endif

deviceIf_getFrameBuffer (start, &length, used);

slide 19
gaius

Inside the shared librar

examine the file pge/c/deviceIf.c
follow the functions: deviceIf_emptyFbuffer,
deviceIf useBuffer and deviceIf finish

notice the use of the module MemSt ream
read the documentation of MemStream [http://
nongnu.org/gm2/gm2-libs—-isomemstream.html[]

MemStream allows the caller to use file operations to maintain a byte
string which is contiguous and held in memory

slide 20
gaius

Conclusion and pgeif.i

the full API describing the C interface is described in
pge/i/pgeif.i
examine this file and see how a circle, colour and box are
created

now read the file pge/python/pge.py and see how a call to box
and colour 1s mapped into the pgeif.i calls

