
slide 1
gaius

Programming Proverbs

10. ‘‘Use good mnemonic names.’’

Henry F. Ledgard, ‘‘Programming Proverbs: Principles of Good
Programming with Numerous Examples to Improve Programming
Style and Proficiency’’, (Hayden Computer Programming Series),
Hayden Book Company, 1st edition, ISBN-13: 978-0810455221,
December 1975.

slide 2
gaius

PGE Input and Timers

PGE is a Predictive physics Game Engine
it operates by predicting the time of next collision rather than using
a frame based approach

slide 3
gaius

PGE Screen and world coordinates 1m x 1m

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

gravity

collision normal

slide 4
gaius

PGE input

PyGame keyboard and mouse events can be utilised in PGE

you can define a call back and register it within the game

examples/breakout/breakout.py

...

pge.register_handler (myquit, [QUIT])

pge.register_handler (key_pressed, [KEYDOWN])

pge.register_handler (mouse_hit, [MOUSEBUTTONDOWN])

...

slide 5
gaius

Breakout input handler functions

examples/breakout/breakout.py

def finish_game ():

sys.exit (0)

def myquit (e):

print "goodbye"

finish_game ()

def key_pressed (e):

if e.key == K_ESCAPE:

myquit (e)

notice that thePyGame Event objecte is passed intomyquit

slide 6
gaius

Breakout mouse input

examples/breakout/breakout.py

def mouse_hit (e):

global gb

mouse = pge.pyg_to_unit_coord (e.pos)

if e.button == 1:

left button

gb.put_xvel (gb.get_xvel ()-0.3)

elif e.button == 3:

right button

gb.put_xvel (gb.get_xvel ()+0.3)

elif gb.moving_towards (mouse[0], mouse[1]):

middle button

pos = gb.get_unit_coord ()

gb.apply_impulse (pge.sub_coord (mouse, pos), 0.4)

else:

middle button

gb.put_yvel (gb.get_yvel ()+0.4)

slide 7
gaius

Breakout mouse input

notice a series of helper function/methods exist

mouse = pge.pyg_to_unit_coord (e.pos)

mouse is a unit vector[x,y] containing the current mouse
position
x and y are in the PGE world range0.0 to 1.0

pos = gb.get_unit_coord ()

pos is a unit vector containing the gold ball position

slide 8
gaius

Breakout mouse input

we can test whether an object is moving towards a position using

mouse = pge.pyg_to_unit_coord (e.pos)

if gb.moving_towards (mouse[0], mouse[1]):

...

slide 9
gaius

Newton’s laws of motion

he stated three physical laws that, together, laid the foundation for
classical mechanics

describe the relationship between a body and the forces acting upon it

describe its motion in response to those forces

slide 10
gaius

Summary of the First law

in an inertial reference frame, an object either remains at rest or
continues to move at a constant velocity, unless acted upon by a net
force

slide 11
gaius

Summary of the Second law

in an inertial reference frame, the vector sum of the forces F on an
object is equal to the mass m of that object multiplied by the
acceleration a of the object:

F = ma

slide 12
gaius

Summary of the Third law

when one body exerts a force on a second body, the second body
simultaneously exerts a force equal in magnitude and opposite in
direction on the first body

these three laws of motion were first compiled by Isaac Newton in his
Philosophiae Naturalis Principia Mathematica (Mathematical Principles
of Natural Philosophy), first published in 1687

Newton used them to explain and investigate the motion of many
physical objects and systems

slide 13
gaius

Adding energy into the PGE world

one of the considerations in building a game engine, is how to
introduce new energy into the simulation

you need to be careful, too much and objects become chaotic
too little and the objects are starved of motion

the amount of energy depends whether the object collisions are elastic
or inelastic

elastic object collisions, energy is never lost

inelastic object collisions, energy is lost (modelling friction, heat, noise
energy)

slide 14
gaius

Applying an impulse to an object

examples/breakout/breakout.py

gb.apply_impulse (pge.sub_coord (mouse, ball), 0.4)

applies an impulse to an object

an impulse is a non-physics term and in the game engine it means

a force applied instantaneously to an object

slide 15
gaius

Applying an impulse to an object

notice that in Newtons 2nd law we see the equationF = ma

the acceleration, implies timems2

we don’t necessarily have a change in velocity over some time
we simply want to introduce energy into the engine

we will see this same problem when handling collisions
it is not always necessary to model the world exactly to get the
desired effect in the game engine

slide 16
gaius

Applying an impulse to an object

we can also instantaneously change an objects velocity
violating Newtons 2nd law

examples/breakout/breakout.py

gb.put_yvel (gb.get_yvel ()+0.4)

obviously we need to be careful with these hacks, or the game will feel
unnatural

slide 17
gaius

Timers

PGE allows users to introduce timer callbacks

here is how a simple second count down might be implemented

examples/breakout/breakout.py

def timer (event = None, unused = None):

global seconds_left, previous

if seconds_left >= 0:

pge.at_time (1.0, timer)

s = "%d" % seconds_left

if previous != None:

previous.rm ()

previous = pge.text (0.8, 0.9, s, white, 100, 1)

seconds_left -= 1

slide 18
gaius

Timers

which when called frommain() will display the current number of
seconds left and register itself to be called1.0 seconds in the future

at_time returns an integerid representing the timer created

this timer can be cancelled usingat_cancel (id)

slide 19
gaius

Timers

if it is cancelled, the callback still occurs, your program could check
cancellation by:

def timer (event = None, unused = None):

global seconds_left, previous

if seconds_left >= 0:

if event != None and event.was_cancelled ():

print "event was cancelled"

pge.at_time (1.0, timer)

s = "%d" % seconds_left

if previous != None:

previous.rm ()

previous = pge.text (0.8, 0.9, s, white, 100, 1)

seconds_left -= 1

slide 20
gaius

Conclusion

we have seen how energy can be added into PGE

we have also explored some of the API calls surrounding
timer events
mouse movement
object movement and how to detect if two objects are moving
towards each other

next week we will examine how the an application can interact with
collisions

