API| layering

Snooler (orother game application)

pge

pgeif

twoDsim Fractions

deviceGroff devicePygame Roots

slide 3
gaus

Python

C/C++/Modula-2

slide 2
gaus

Data structuresused in PGE

in this lecture we will examine thek data structures
used in PGE

at the end of the lecture you should understand how
these data structures are used to represent the world
of polygons, circles and colours in the game engine

before we examine the data structures we will
examine the API layering in a little more detail

slide 4
gaus

API| layering

recall
python/pge.py is written in Python
c/pgeif.cis written in C and its external
Python functions are defined inpgeif.i
swig generates the wrapping code

the filec/pgeif . c contains the implementation of
all the publically accessible Python methods

it also ensures that all publically created objects in
the Physics game engine are remembered and stored
in this file

slide 5 slide 6
gaus gaus

| mplementation of box

m this allows colours, polygons, circles to be mapped [| c/pgeif.c
onto their high leel Python counterparts in T
python/pge.py . box - place a box in the world at (x0,y0), (x0+i,y0+7)

unsigned int box (double x0, double yO,

m it also allows the implementation of { double i, double j, unsigned int c)
python/pge.py to be cleaner as it will alays double k;
obtain ay ObJECt fromc/pgeif.c x0 = check_range (x0, (char *) "box", 3, (char *) "x0",
y0 = check_range (y0, (char *) "box", 3, (char *) "yO",
k = check_range (x0+i, (char *) "box", 3, (char 1) "x0+
m examine the implementation felox inside k = check_range (y0+j, (char *) "box", 3, (char 1) "y0+
return trace (addDef ((TypeOfDef) object,
c/pgeif.c twoDsim_box (x0, y0, i, 3,
(deviceIf_Colour) lookupDef ((Typ
(char *) "box", 3);
. }
m we see that much af/pgeif.c just calls upon the
services of the lower layet/twoDsim. c
after performing extenge checking of parameter
types
slide 7 slide 8
gaius gaius

| mplementation of box The data structuresinside ¢/twoDsim.c

B Wwe see that it creates a box (ustigDsim_box) | c/twoDsim.c
it saves this box in its local definitionsddpe £ typedef enum {polygonOb, circleOb, springOb} Object
it is sved as @ object and not acolour

Type;
typedef enum {frameKind, functionKind, collisionKind} eve

typedef enum {frameEvent, circlesEvent, circlePolygonEven

m also note that the 5th parameteet®Dsim_box is polygonPolygonEvent, functionEvent} eventTy
a wlour id, ¢, which is looked up usinjookupDe f

B ObjectType defines the different kinds of object
(ignore spring object)

B eventKind defines the three major classification of
evets

slide 9 slide 10
gaus gaus

uresinside c/twoDs obj ect

event Type further subclassifies theent kind with | c/twoDsim.c
the collision gent info

typedef struct _T2_r {

icti i i unsigned int 1id; /* the id of the object.
we .dI.StInngh between a Cer|§/P0|y90n unsigned int deleted; /* has it been deleted?
collision and a circle/circle collision and a unsigned int fixed; /* is it fixed to be worl
.- unsigned int stationary; /* is it stationary? */
pOIngﬂ/pOlygon COIIISIO” double vx; /* velocity along x—axis.
double vy; /* velocity along y-axis.
double ax; /* acceleration algng x-a
double ay; /* acceleration algng y-a
double inertia; /* a constant for the 1if
double angleOrientation; /* the current rotation a
double angularVelocity; /* the rate of rotation.
double angularMomentum; /* used to hold the curre
unsigned int interpen; /* a count of the fimes t
ObjectType object; /* case tag */
union {

Polygon p; /* object is either a polygon,
Circle c;

Spring s;
bi
}i
slide 11 slide 12
gaius gaius
c/twoDsim.c | c/twoDsim.c
typedef struct _T2_r _T2; typedef struct Circle_r Circle;

typedef _T2 *Object;

struct Circle_r {

coord_Coord pos; /* center of the circle in the w
. . . ! double r; /* radius of circle. */
notice you can ignore thﬂ]ertla: double mass; /* mass of the circle.| */
. . . 1 . * 1 *
angleOrlentatlon, angularVe1001ty and) deviceIf_Colour col; /* colour of circle. /

angularMomentum as these are used to implement
rotation

slide 13
gaus

c/twoDsim.c

typedef struct Polygon_r Polygon;

struct _T3_a { polar_Polar array[MaxPolygonPoints+1]; };

struct Polygon_r {
unsigned int nPoints;
_T3 points;
double mass;
deviceIf_Colour col;
coord_Coord cOfG;

bi
typedef struct _T3_a _T3;

slide 15
gaus

Polar coordinates

remember that a polar coordinate has a magnitude
and an angle
an angle of O radians is along the x-axis
magnitude ofr and an angle ab

SO we can corert a polar to cartesian coordinate by:
X = COS) Xr

y =sin(w) xr

slide 14
gaus

the polygon has an array which is used to contain
each corner
a aorner is a polar coordinate from the centre of
gravity

PO

P1

P3
P2

slide 16
gaus

in our diagram

PO = (p0, 135360 x 277)
P1=(pl,45360x% 2n)
P2 =(p2, 315360 2m)
P3 = (p3, 225360 x 217)

where p1, p2, p3, p4 are the lengths of the line from
the CofG to the corner
dotted lines in our diagram

slide 17
gaus

Polar coordinates

the angle values in the polar coordinates for our
polygon are the offset of the angle for the particular
corner
the angularVelocity is used to determine the
rotation of the polygon, this is added to each
corner to find out the corner position ay dime

this allows rotation of the polygon to be modelled at a
later date

slide 19
gaus

Polar coordinates

we can see hothis data structure represents a
polygon by following thedumpPolygon function

slide 18
gaus

Polar coordinateq

at ary time in the futuret we can determine the
polygons cornei, by:

Q = angleOrientation + angular Vel ocity x t
X; = cofgy +r; x cos; + Q)

y; = cofgy +r; xsin(w; + Q)

slide 20
gaus

Polar coordinateq

see hwv each corner is defined by following through
the functionbox
intopoly4

how it calculates the box CofG

how it defines each corner rebai o the CofG and as
a polar coordinate
each corner is orbiting the CofG

slide 21
gaus

c/twoDsim.c

static void dumpPolygon (
{
unsigned int i;
coord_Coord c0;

libc_printf ((char *) "
o->p.mass,
libc_printf ((char *) "
o—>p.cOfG.
for (i=0; i<=o->p.nPoin
{
c0 = coord_addCoord
polar_polarToC
((polar_Polar)
libc_printf ((char
}

Object o)

polygon mass %g colour %d\\n", 2
o->p.col);
c of g (%g,%9)\\n", 19
X, 0—>p.cOfG.y);
ts-1; i++)

(o—>p.cOfG,
oord (polar_rotatePolar
o->p.points.array[i], o-YangleO
*) " point at (%g,%g9)\\n", 20,

slide 23
gaus

Acceleration and Conclusion

examine the functiogetAccelCoord and see if
you can think hev you might modify PGE to allow

per object gravity

slide 22
gaus

follow through the functiomlobrawFrame and see
how the corners of a polygon are updated dependant
upon theangularvelocity,

angleOrientation and the acceleration and
velocity components

examinenewPositionRotationCoord,
newPositionRotationSinScalar and

newPositionRotationCosScalar

