
slide 2
gaius

Data structures used in PGE

in this lecture we will examine the key data structures
used in PGE

at the end of the lecture you should understand how
these data structures are used to represent the world
of polygons, circles and colours in the game engine

before we examine the data structures we will
examine the API layering in a little more detail

slide 3
gaius

API layering

deviceGroff

twoDsim

Roots

Fractions

pgeif

Snooker (orother game application)

C/C++/Modula-2

Pythonpge

devicePygame

slide 4
gaius

API layering

recall
python/pge.py is written in Python
c/pgeif.c is written in C and its external
Python functions are defined ini/pgeif.i
swig generates the wrapping code

the filec/pgeif.c contains the implementation of
all the publically accessible Python methods

it also ensures that all publically created objects in
the Physics game engine are remembered and stored
in this file

slide 5
gaius

API layering

this allows colours, polygons, circles to be mapped
onto their high level Python counterparts in
python/pge.py

it also allows the implementation of
python/pge.py to be cleaner as it will always
obtain any object fromc/pgeif.c

examine the implementation forbox inside
c/pgeif.c

we see that much ofc/pgeif.c just calls upon the
services of the lower layerc/twoDsim.c

after performing extensive checking of parameter
types

slide 6
gaius

Implementation of box

c/pgeif.c

/*

box - place a box in the world at (x0,y0),(x0+i,y0+j)

*/

unsigned int box (double x0, double y0,

double i, double j, unsigned int c)

{

double k;

x0 = check_range (x0, (char *) "box", 3, (char *) "x0", 2);

y0 = check_range (y0, (char *) "box", 3, (char *) "y0", 2);

k = check_range (x0+i, (char *) "box", 3, (char *) "x0+i", 4);

k = check_range (y0+j, (char *) "box", 3, (char *) "y0+j", 4);

return trace (addDef ((TypeOfDef) object,

twoDsim_box (x0, y0, i, j,

(deviceIf_Colour) lookupDef ((TypeOfDef) colour, c))),

(char *) "box", 3);

}

slide 7
gaius

Implementation of box

we see that it creates a box (usingtwoDsim_box)
it saves this box in its local definitionsaddDef
it is saved as an object and not acolour

also note that the 5th parameter totwoDsim_box is
a colour id,c, which is looked up usinglookupDef

slide 8
gaius

The data structures inside c/twoDsim.c

c/twoDsim.c

typedef enum {polygonOb, circleOb, springOb} ObjectType;

typedef enum {frameKind, functionKind, collisionKind} eventKind;

typedef enum {frameEvent, circlesEvent, circlePolygonEvent,

polygonPolygonEvent, functionEvent} eventType;

ObjectType defines the different kinds of object
(ignore spring object)

eventKind defines the three major classification of
ev ents

slide 9
gaius

The data structures inside c/twoDsim.c

eventType further subclassifies the event kind with
the collision event info

we distinguish between a circle/polygon
collision and a circle/circle collision and a
polygon/polygon collision

slide 10
gaius

object

c/twoDsim.c

typedef struct _T2_r {

unsigned int id; /* the id of the object.

unsigned int deleted; /* has it been deleted?

unsigned int fixed; /* is it fixed to be world?

unsigned int stationary; /* is it stationary? */

double vx; /* velocity along x-axis.

double vy; /* velocity along y-axis.

double ax; /* acceleration along x-axis.

double ay; /* acceleration along y-axis.

double inertia; /* a constant for the life of the object used for rotation.

double angleOrientation; /* the current rotation angle of the object.

double angularVelocity; /* the rate of rotation.

double angularMomentum; /* used to hold the current momemtum after a collision.

unsigned int interpen; /* a count of the times the object is penetrating another object.

ObjectType object; /* case tag */

union {

Polygon p; /* object is either a polygon, circle or string.

Circle c;

Spring s;

};

};

slide 11
gaius

object

c/twoDsim.c

typedef struct _T2_r _T2;

typedef _T2 *Object;

notice you can ignore theinertia,
angleOrientation, angularVelocity and
angularMomentum as these are used to implement
rotation

slide 12
gaius

Circle

c/twoDsim.c

typedef struct Circle_r Circle;

struct Circle_r {

coord_Coord pos; /* center of the circle in the world.

double r; /* radius of circle. */

double mass; /* mass of the circle. */

deviceIf_Colour col; /* colour of circle. */

};

slide 13
gaius

Polygon

c/twoDsim.c

typedef struct Polygon_r Polygon;

struct _T3_a { polar_Polar array[MaxPolygonPoints+1]; };

struct Polygon_r {

unsigned int nPoints;

_T3 points;

double mass;

deviceIf_Colour col;

coord_Coord cOfG;

};

typedef struct _T3_a _T3;

slide 14
gaius

Polygon

the polygon has an array which is used to contain
each corner

a corner is a polar coordinate from the centre of
gravity

cog

P0

P1

P2
P3

slide 15
gaius

Polar coordinates

remember that a polar coordinate has a magnitude
and an angle

an angle of 0 radians is along the x-axis
magnitude of,r and an angle ofω

so we can convert a polar to cartesian coordinate by:

x = cos(ω) × r

y = sin(ω) × r

slide 16
gaius

Polar coordinates

in our diagram

P0 = (p0, 135/360× 2π)

P1 = (p1, 45/360× 2π)

P2 = (p2, 315/360× 2π)

P3 = (p3, 225/360× 2π)

where p1, p2, p3, p4 are the lengths of the line from
the CofG to the corner

dotted lines in our diagram

slide 17
gaius

Polar coordinates

the angle values in the polar coordinates for our
polygon are the offset of the angle for the particular
corner

the angularVelocity is used to determine the
rotation of the polygon, this is added to each
corner to find out the corner position at any time

this allows rotation of the polygon to be modelled at a
later date

slide 18
gaius

Polar coordinates

at any time in the future,t we can determine the
polygons corner,i by:

Ω = angleOrientation + angularVelocity × t

xi = cofgx + ri × cos(ω i + Ω)

yi = cofgy + ri × sin(ω i + Ω)

slide 19
gaius

Polar coordinates

we can see how this data structure represents a
polygon by following thedumpPolygon function

slide 20
gaius

Polar coordinates

see how each corner is defined by following through
the functionbox

into poly4

how it calculates the box CofG

how it defines each corner relative to the CofG and as
a polar coordinate

each corner is orbiting the CofG

slide 21
gaius

dumpPolygon

c/twoDsim.c

static void dumpPolygon (Object o)

{

unsigned int i;

coord_Coord c0;

libc_printf ((char *) "polygon mass %g colour %d\\n", 27,

o->p.mass, o->p.col);

libc_printf ((char *) " c of g (%g,%g)\\n", 19,

o->p.cOfG.x, o->p.cOfG.y);

for (i=0; i<=o->p.nPoints-1; i++)

{

c0 = coord_addCoord (o->p.cOfG,

polar_polarToCoord (polar_rotatePolar

((polar_Polar) o->p.points.array[i], o->angleOrientation)));

libc_printf ((char *) " point at (%g,%g)\\n", 20, c0.x, c0.y);

}

}

slide 22
gaius

dumpPolygon

follow through the functiondoDrawFrame and see
how the corners of a polygon are updated dependant
upon theangularVelocity,
angleOrientation and the acceleration and
velocity components

examinenewPositionRotationCoord,
newPositionRotationSinScalar and
newPositionRotationCosScalar

slide 23
gaius

Acceleration and Conclusion

examine the functiongetAccelCoord and see if
you can think how you might modify PGE to allow
per object gravity

