- in this lecture we will examine the key data structures used in PGE
- at the end of the lecture you should understand how these data structures are used to represent the world of polygons, circles and colours in the game engine
- before we examine the data structures we will examine the API layering in a little more detail

slide 3 gaius

API layering

Snooker (or other game application	on)	
pge	Python	
pgeif	C/C++/Modula-2	
twoDsim	Fractions	
deviceGroff devicePygame	Roots	

API layering

recall

python/pge.py is written in Python

 c/pgeif.c is written in C and its external Python functions are defined in i/pgeif.i
 swig generates the wrapping code

- swig generates the wrapping code
- the file c/pgeif.c contains the implementation of all the publically accessible Python methods
- it also ensures that all publically created objects in the Physics game engine are remembered and stored in this file

slide 4 gaius

API layering

- it also allows the implementation of python/pge.py to be cleaner as it will always obtain any object from c/pgeif.c
- examine the implementation for box inside
 c/pgeif.c
- we see that much of c/pgeif.c just calls upon the services of the lower layer c/twoDsim.c
 - after performing extensive checking of parameter types

c/pgelf.c	
* box - place a box in the world at (x0,y0),(x0+i,y(/)+j)
unsigned int box (double x0, double y0, double i, double j, unsigned int c))
double k;	
<pre>x0 = check_range (x0, (char *) "box", 3, (char *) y0 = check_range (y0, (char *) "box", 3, (char *) k = check_range (x0+i, (char *) "box", 3, (char *) k = check_range (y0+j, (char *) "box", 3, (char *) return trace (addDef ((Tvpe0fbef) object.</pre>	"x0" "y0" "x0 "y0
twoDsim_box (x0, y0, i, j, (deviceIf_Colour) lookupDef	((Ту

Implementation of box

slide 7 gaius

slide f

gaius

Implementation of box

- we see that it creates a box (using twoDsim_box)
 - it saves this box in its local definitions addDef
 - it is saved as an object and not a colour
- also note that the 5th parameter to twoDsim_box is a colour id, c, which is looked up using lookupDef

slide 8 gaius

The data structures inside c/twoDsim.c

				c	/two	Dsim.c	
typedef	enum	{polygonOb,	circleOb,	spring	JOp}	Object	Type;
typedef	enum	{frameKind,	functionK	ind, co	ollis	sionKir	d} eve
typedef	enum	{frameEvent, polygonPoly	, circlesE [,] ygonEvent,	vent, c functi	circl LonEv	LePolyg vent} e	onEven ventTy

- ObjectType defines the different kinds of object (ignore spring object)
- eventKind defines the three major classification of events

slide 6 gaius

- eventType further subclassifies the event kind with
 the collision event info
 - we distinguish between a circle/polygon collision and a circle/circle collision and a polygon/polygon collision

rotation

	c/twoDsim.c
typedef struct _T2_r {	
unsigned int id;	/* the id of the object.
unsigned int deleted;	/* has it been deleted?
unsigned int fixed;	/* is it fixed to be worl
unsigned int stationary;	/* is it stationary? */
double vx;	/* velocity along x-axis.
double vy;	/* velocity along v-axis.
double ax;	/* acceleration along x-a
double ay;	/* acceleration along y-a
double inertia;	/* a constant for the lif
double angleOrientation;	/* the current rotation a
double angularVelocity;	/* the rate of rotation.
double angularMomentum;	/* used to hold the curre
unsigned int interpen;	/* a count of the times t
ObjectType object; /* cas	e tag */
union {	5
Polygon p; /* obj	ect is either a polygon.
Circle c;	111111111111111111111111111111111111111
Spring s:	
1.	

slide 9 gaius

struct _T3_a { polar_Polar array[MaxPolygonPoints+1]; }; struct Polygon_r {

coord_Coord cOfG;

_T3 points; double mass; deviceIf_Colour col;

ΤЗ;

unsigned int nPoints;

typedef struct Polygon_r Polygon;

};

Т3 а

typedef struct

- slide 14 gaius
- the polygon has an array which is used to contain each corner
 - a corner is a polar coordinate from the centre of gravity

slide 15 gaius

slide 13 gaius

c/twoDsim.c

Polar coordinates

- remember that a polar coordinate has a magnitude and an angle
 - an angle of 0 radians is along the x-axis
 - magnitude of, r and an angle of ω
- so we can convert a polar to cartesian coordinate by:
- $x = \cos(\omega) \times r$
- $y = \sin(\omega) \times r$

slide 16 gaius

Polar coordinates

- in our diagram
- $P0 = (p0, 135/360 \times 2\pi)$
- $P1 = (p1, 45/360 \times 2\pi)$
- $P2 = (p2, 315/360 \times 2\pi)$
- $P3 = (p3, 225/360 \times 2\pi)$
- where p1, p2, p3, p4 are the lengths of the line from the CofG to the corner
 - dotted lines in our diagram

Polar coordinates

- the angle values in the polar coordinates for our polygon are the offset of the angle for the particular corner
 - the angularVelocity is used to determine the rotation of the polygon, this is added to each corner to find out the corner position at any time
- this allows rotation of the polygon to be modelled at a later date

at any time in the future, t we can determine the

Polar coordinates

- $\square \quad \Omega = angleOrientation + angularVelocity \times t$
- $x_i = cofg_x + r_i \times \cos(\omega_i + \Omega)$

polygons corner, *i* by:

 $y_i = cofg_y + r_i \times \sin(\omega_i + \Omega)$

slide 19 gaius

Polar coordinates

we can see how this data structure represents a polygon by following the dumpPolygon function

Polar coordinates

- see how each corner is defined by following through the function box
 - into poly4
- how it calculates the box CofG
- how it defines each corner relative to the CofG and as a polar coordinate
 - each corner is orbiting the CofG

slide 20 gaius

S.	10	le	2
	ş	зa	iu

dumpPolygon

1	static word dumpDolugon (Object o)
	((CD Ject 0)
	unsigned int i.
	anord Coord of
	coora_coora co;
\n ", 2	libc_printf ((char *) "polygon mass %g colour %d o->p.mass, o->p.col); libc printf ((char *) " c of g (%g.%g)\\n". 19.
	$o \rightarrow p. cofG.x. o \rightarrow p. cofG.y);$
	for $(i=0: i \le 0 > p. pPoints - 1: i++)$
	1
	$c_{0} = c_{0} + c_{0$
	polar polarToCoord (polar rotatePolar
angloo	(polar Polar) o->p points array[i]
angreo.	((poiai_Poiai) 0->p.points.array[i], 0->
, 20, '	libc_printi ((cnar *) " point at (%g,%g)\\n
	}
1	}

- follow through the function doDrawFrame and see how the corners of a polygon are updated dependant upon the angularVelocity, angleOrientation and the acceleration and velocity components
- examine newPositionRotationCoord, newPositionRotationSinScalar and newPositionRotationCosScalar

slide 23 gaius

Acceleration and Conclusion

examine the function getAccelCoord and see if you can think how you might modify PGE to allow per object gravity