
slide 2
gaius

Inside Chisel

design goals
in the style of Unix
command line only
one command to achieve one task well

chisel is a package with at least three command
line programs

txt2pen convert atxt file into apen file
pen2map convert apen file into amap file
(doom3)
rndpen generate a random pen file

for your coursework you should consider extending:
pen2map or txt2pen or introducing a third
which could manipulate apen or txt file

slide 3
gaius

rndpen

generate a randompen map

highly alpha code, but it will generate a corridor
based random pen file

the program does always find a map

so some experimentation is required for the pseudo
random numbers to mesh with the algorithm to
generate a map

slide 4
gaius

rndpen

$ rndmap -h
Usage rndpen [-a minroomsize] [-b maxroomsize] \
[-c mincorridorlength] [-d maxcorridorlength] \
[-e totalcorridorlength] [-h] [-o outputfile] \
[-s seed] [-x maxx] [-y maxy]
-a minroomsize (default is 6)
-b maxroomsize (default is 13)
-c mincorridorsize (default is 15)
-d maxcorridorsize (default is 70)
-e totalcorridorlength (default is 300)
-o outputfile (default is stdout)
-s seed (default is 3)
-x minx for whole map (default is 120)
-y maxy for whole map (default is 80)

slide 5
gaius

rndpen

$ rndmap -s 3 -a 5 -b 10 -c 5 -d 10 -e 20 -x 30 -y 30 | pen2map -t -

notice how the command line tools can be combined
using the pipe

slide 6
gaius

rndpen

#######
#
#
#
#
###..######...##
#
###...#
#...##### # #
##...##
.
.
.
#####
################...##

#
.
.

######## . #
. #####
. #
#
#####
###
#
#
#
#
#
######

slide 7
gaius

rndpen

rndpen prioritises placing random corridors on the
map

it then tries to fill in the remaining gaps with boxes
and will combine boxes to give rooms of desired
min/max dimensions

it also restricts the number of walls to 8

it might be useful if you wanted to generate a map
quickly

slide 8
gaius

Inside: txt2pen

source is in one file:
$HOME/Sandpit/chisel/python/txt2pen.py

690 lines of Python

uses the following command line options

$ cd $HOME/Sandpit/chisel/python
$ python txt2pen.py -h
-d debugging
-h help
-V verbose
-v version
-o outputfile name

slide 9
gaius

Inside: txt2pen

notice the-o option which takes an additional
argument (filename)

it uses thegetopt module to handle the options
see functionhandleOptions

slide 10
gaius

Inside: txt2pen

def handleOptions ():
global debugging, verbose, outputName

outputName = None
try:

optlist, l = getopt.getopt(sys.argv[1:], ’:dho:vV’)
for opt in optlist:

if opt[0] == ’-d’:
debugging = True

elif opt[0] == ’-h’:
usage (0)

elif opt[0] == ’-o’:
outputName = opt[1]

elif opt[0] == ’-v’:
printf ("txtpen version " + str (versionNumber) + "\n")
sys.exit (0)

elif opt[0] == ’-V’:
verbose = True

if l != []:
return (l[0], outputName)

except getopt.GetoptError:
usage (1)

return (None, outputName)

slide 11
gaius

Inside: txt2pen

it uses a dictionary to maintain the defines

stores the map in a 2D list (array)
mapGrid

slide 12
gaius

Inside: txt2pen

it determines the walls of a room
it finds the room number (location)
moves to the top left inside the room
(generateRoom)
it then attempts to turn left as it moves around
the room (the wall is always on the left)
examinescanRoom for the implementation
it looks the square forward and square forward
left comparing the two characters:## or -- or
#-

wall and- for space

a space should be thought of as not a wall

slide 13
gaius

Inside: txt2pen

scanRoom will start at the top right corner of a room
and walk around the edge with the wall always on the
left

it builds a list of walls, a wall stops/starts at each
turn

if it sees## then it must turn right
the old wall is stored and a new start position is
remembered

if it sees-- then it must turn left
the old wall is stored and a new start position is
remembered

if it sees#- then it continues moving a square
forward

slide 14
gaius

Extending chisel (txt2pen)

one of the obvious improvements is for chisel to
automatically introduce lights

add another option to enable automatic lighting
-l

copyscanRoom into a new function
introduceLights

adapt this new function to add lights
but only if the rooms has no user defined lights

slide 15
gaius

Inside: pen2map

chisel/python/pen2map.py is 2086 lines of
Python

$ cd $HOME/Sandpit/chisel/python
$ python pen2map.py -h
Usage: pen2map [-c filename.ss] [-dhmtvV] [-o outputfile] inputfile

-c filename.ss use filename.ss as the defaults for the map file
-d debugging
-e provide comments in the map file
-g type game type. The type must be ’single’ or ’deathmatch’
-h help
-m create a doom3 map file from the pen file
-s generate statistics about the map file
-t create a txt file from the pen file
-V generate verbose information
-v print the version
-o outputfile place output into outputfile

slide 16
gaius

Example style sheet for the map

how are textures defined - could use the defaults - and
ignore this slide!

or examinechisel/python/tiny.ss

style sheet for simple doom3 maps

define floor textures/hell/qfloor
define portal textures/editor/visportal
define open textures/editor/visportal
define closed textures/hell/wood1
define secret textures/hell/bricks1a_d
define wall textures/hell/cbrick2b
define ceiling textures/hell/wood1

slide 17
gaius

pen2map

reads in apen file and converts it into a doom3map
file

thepen map is parsed by a top down recursive
descent parser

the pen syntax is described by an ebnf grammar
(extended backus naur form)
hand translated into a top down recursive descent
parser

recursive descent parsers are fast and straightforward
to implement once the grammar is defined

they also allow for strict syntax checking of input
they are used extensively in the construction of
compilers

slide 18
gaius

ebnf

consists of terminal symbols and non-terminal
production rules which define the legal sequence of
symbols

in C++ for example, a terminal symbol might be
while, for, do, = ; 0 etc

a rule might be:

assignment := lhs "=" rhs =:

meaning theassignment rule is satisfied if there is
a leg al lhs followed by= followed byrhs

slide 19
gaius

pen example

ROOM 1
WALL

1 21 18 21
18 21 18 14
18 14 1 14
1 14 1 21

DOOR 18 18 18 17 STATUS OPEN LEADS TO 2
MONSTER python_doommarine_mp AT 13 18
LIGHT AT 12 20
LIGHT AT 4 15
LIGHT AT 15 15
SPAWN PLAYER AT 3 18

END

slide 20
gaius

pen grammar in ebnf

FileUnit := RoomDesc { RoomDesc } [RandomTreasure] "END." =:

RoomDesc := ’ROOM’ Integer
{ WallDesc | DoorDesc | TreasureDesc } ’END’ =:

WallDesc := ’WALL’ WallCoords { WallCoords } =:

WallCoords := Integer Integer Integer Integer =:

DoorDesc := ’DOOR’ DoorCoords { DoorCoords } =:

slide 21
gaius

pen grammar in ebnf

DoorCoords := Integer Integer Integer Integer Status
’LEADS’ ’TO’ Integer =:

Status := ’STATUS’ (’OPEN’
| ’CLOSED’
| ’SECRET’

) =:

TreasureDesc := ’TREASURE’ ’AT’ Integer Integer
’IS’ Integer =:

RandomTreasure := ’RANDOMIZE’ ’TREASURE’ Integer
{ Integer } =:

slide 22
gaius

ebnf meta symbols

{ foo }

means it is legal to hav e0 or more occurrences
of foo

[foo]

means it is legal to hav e0 or 1 occurrence of
foo

(foo | bar)

here the(and) group together the extent of the
|

"foo" represents the terminal symbolf o o

as opposed to the rulefoo

slide 23
gaius

Translating ebnf grammar into a top
down parser

once the grammar is defined it is straightforward to
implement a top down parser

if the grammar is said to be well formed if we only
need to look at the next token to determine the flow
of control in the parser

slide 24
gaius

Translating ebnf grammar into a top
down parser

we define a few helper functions
expect ("foo") insists that the next token is
"foo" and generates an error if it is not "foo"
if "foo" is seen the consume this symbol and
move onto the next

expecting (list)

returnsTrue if any symbol inlist matches the
current symbol

integer returnTrue if the current symbol is an
integer

if True store the value of the integer in
curinteger

