
slide 1

gaius

Tutorial interpen.c

writing test code is an important component of

development

useful aid to debug code in development

useful regression test code

interpen.c will be used by pge to help implement

frame based collision (moving polygons)

examine the file pge/c/interpen.c and the file

pge/c/interpen.h

the header file defines the exported functions and

exported datatypes

write 2 simple unit tests for each exported function

compile and link your test code with the

pge/c/interpen.c source code

does it work?

slide 2

gaius

interpen.h

/* automatically created by mc from ../git-pge/m2/interpen.def. */

#if !defined (_interpen_H)

define _interpen_H

ifdef __cplusplus

extern "C" {

endif

if !defined (PROC_D)

define PROC_D

typedef void (*PROC_t) (void);

typedef struct { PROC_t proc; } PROC;

endif

slide 3

gaius

interpen.h

include "Gcoord.h"

include "Gsegment.h"

include "Ghistory.h"

if defined (_interpen_C)

define EXTERN

else

define EXTERN extern

endif

typedef struct interpen_interCircle_r interpen_interCircle;

struct interpen_interCircle_r {

double radius;

coord_Coord center;

};

slide 4

gaius

interpen.h

/*

segmentCollide - returns TRUE if segment, a, overlaps with, b.

If true is returned then collisionPoint will

be set to the intersection point.

*/

EXTERN unsigned int interpen_segmentsCollide (segment_Segment a,

segment_Segment b,

coord_Coord *p,

history_whereHit *at0,

history_whereHit *at1,

unsigned int *ptn0,

unsigned int *ptn1);

slide 5

gaius

interpen.h

/*

circleCollide - return TRUE if circles, a, b, collide.

*/

EXTERN unsigned int interpen_circleCollide (interpen_interCircle a,

interpen_interCircle b);

slide 6

gaius

interpen.h

/*

circleSegmentCollide - Pre-condition: interCirle, c, and Segment,

s, are well formed.

Post-condition: return TRUE if circle, c,

collides with segment, s.

If true is returned then the, point,

on the line in deepest collision

with the circle is filled in and likewise,

at, is set to corner or edge.

Indicating which part of the segment

collides with the circle.

ptn will be set to 0 if point1 of the

segment collides with the circle.

ptn will be set to 1 if point2 of the

segment collides with the circle.

*/

EXTERN unsigned int interpen_circleSegmentCollide (interpen_interCircle c,

segment_Segment s,

coord_Coord *point,

history_whereHit *at,

unsigned int *ptn);

slide 7

gaius

interpen.h

/*

initCircle - create and return an interpen_interCircle structure.

*/

EXTERN interpen_interCircle interpen_initCircle (double radius,

coord_Coord point);

/*

unitTest - run some basic unit tests for the module.

*/

EXTERN void interpen_unitTest (void);

ifdef __cplusplus

}

endif

undef EXTERN

#endif

slide 8

gaius

circleCollide algorithm

sum the radii of both circles

subtract the centers one circle from the other

thus generating a vector, distance, from one

circle to the second circle

return vector_length (distance) <=

sum

slide 9

gaius

circleCollide

$HOME/Sandpit/git-pge/c/interpen.c

unsigned int interpen_circleCollide (interpen_interCircle a,

interpen_interCircle b)

{

double radiusSum;

coord_Coord distance;

radiusSum = a.radius+b.radius;

distance = coord_subCoord (a.center, b.center);

return (coord_lengthCoord (distance)) <= radiusSum;

}

slide 10

gaius

circlePointCollide algorithm

compute the distance vector between the point and

circle centre

return vector_length (distance) <=

radius of circle

slide 11

gaius

circlePointCollide

$HOME/Sandpit/git-pge/c/interpen.c

/*

circlePointCollide - returns TRUE if circle, c,

and point, p, collide.

*/

static unsigned int circlePointCollide (interpen_interCircle c,

coord_Coord p)

{

coord_Coord distance;

distance = coord_subCoord (c.center, p);

return (coord_lengthCoord (distance)) <= c.radius;

}

slide 12

gaius

Circle circle collisions

slide 13

gaius

Circle circle collisions

the two circles here are at:

(6, 7) radius .5 darkred

(6.75, 7) radius .5 darkblue

we could use this test as a regression test (unit test)

for interpen.c

slide 14

gaius

Circle circle collisions

slide 15

gaius

Circle circle collisions

the two circles here are at:

(6, 7) radius .5 darkred

(6, 6.25) radius .5 darkblue

we could use this test as a regression test (unit test)

for interpen.c

slide 16

gaius

circle segment collision test code diagram

slide 17

gaius

circle segment collision test code diagram

the circle is at position .5, .5 radius .05

the line is from (.2,.48) to (.6,.48)

lookup the definition for circleSegmentCollide

and write some test code for this function

slide 18

gaius

Ginterpen.h snippet

pge/c/Ginterpen.h

/*

circleSegmentCollide -

Pre-condition: interCirle, c, and Segment, s, are well formed.

Post-condition: return TRUE if circle, c, collides with segment, s.

If true is returned then the, point, on the line in deepest collision

with the circle is filled in and likewise, at, is set to corner or edge.

Indicating which part of the segment collides with the circle.

ptn will be set to 0 if point1 of the segment collides with the circle.

ptn will be set to 1 if point2 of the segment collides with the circle.

*/

EXTERN unsigned int interpen_circleSegmentCollide

(interpen_interCircle c, segment_Segment s, coord_Coord *point,

history_whereHit *at, unsigned int *ptn);

slide 19

gaius

Ginterpen.h snippet

the function takes 5 parameters:

the first two are the circle and segment in

question

point is the deepest point of the line in the

circle (if they are in collision)

at describes the point (whether it was the

corner/end

of the segment or edge/midpoint)

ptn is the point number of the segment which is

in collision (assuming at==corner) and will

be either 0 or 1 representing the first or second

point in the segment

write some test code for this function - and check all

possible parameters

slide 20

gaius

segmentsCollide

/*

segmentCollide - returns TRUE if segment, a, overlaps with, b.

If true is returned then, p, will be set to

the intersection point. ata, atb determine where segment, a,

and segment, b, hit (corner or edge). If ata == corner then

ptna is either 0 or 1 representing the point which collided.

Likewise if atb == corner then

ptna is either 0 or 1 representing the point which collided.

*/

EXTERN unsigned int interpen_segmentsCollide

(segment_Segment a, segment_Segment b, coord_Coord *p,

history_whereHit *ata, history_whereHit *atb,

unsigned int *ptna, unsigned int *ptnb);

slide 21

gaius

segmentsCollide

slide 22

gaius

segmentsCollide

in the previous example the two segments are defined

by the end points

blue (2,5) and (8,5)

red (5,2) and (5,8)

write some test code to check the function behaves as

expected

write two tests, one with the values as above and

another with the end of a segment colliding with

the other segment

we will be using these functions in the construction

of the coursework - to implement free moving

polygons in pge

