
slide 1
gaius

Interrupt handling and context switching

these two topics are separate and we will examine
them in turn

slide 2
gaius

Interrupts

HW

Shell

Device drivers

daemonsapplications

utilities

commands

compiler

Kernel

the user programs and hardware communicates with
the kernel through interrupts

slide 3
gaius

Four different kinds of interrupts

device interrupt, such as a hardware timer, for
example the 8253counter0 reaching0 on an IBM-
PC

user code issuing a software interrupt, often called a
system call

an illegal instruction (divide by zero, or an opcode
which the processor does not recognise)

or a memory management fault interrupt (occurs
when code attempts to read from non existent
memory)

slide 4
gaius

First level interrupt handler

the kernel must detect which kind of interrupt has
occurred and call the appropriate routine

this code is often termed thefirst level interrupt
handler

the pseudo code for theFLIH follows:

slide 5
gaius

First level interrupt handler

save program registers and disable interrupts

k = get_interrupt_kind ();

if (k == source 1) service_source1 ();

else if (k == source 2) service_source2 ();

else if (k == source 3) service_source3 ();

else if (k == source 4) service_source4 ();

else if (k == source 5) service_source5 ();

etc

restore program registers and enable interrupts

return

you may find the hardware on the microprocessor
performs the save and restore program registers and
disabling/enabling interrupts

possibly by one instruction

slide 6
gaius

First level interrupt handler

you might also find the hardware enables you to
determine the source of the interrupt easily

most microprocessors have an interrupt vector
table

typically one vector per source is
implemented

equally, howev er the code can be ugly as it depends
upon the hardware specifications

slide 7
gaius

Example of FLIH in GNU LuK

GNU LuK (Lean uKernel) is a very small
microkernel which allows premptive processes,
interrupt driven devices and semaphores

slide 8
gaius

Example of FLIH in GNU LuK

IsrTemplate[0] := 0FCH ; (* cld (disable interrupts) *)

IsrTemplate[1] := 050H ; (* push eax *)

IsrTemplate[2] := 051H ; (* push ecx *)

IsrTemplate[3] := 052H ; (* push edx *)

IsrTemplate[4] := 01EH ; (* push ds *)

IsrTemplate[5] := 006H ; (* push es *)

IsrTemplate[6] := 00FH ; (* push fs *)

IsrTemplate[7] := 0A0H ;

IsrTemplate[8] := 0B8H ; (* movl 0x00000010, %eax *)

IsrTemplate[9] := 010H ;

IsrTemplate[10] := 000H ;

IsrTemplate[11] := 000H ;

IsrTemplate[12] := 000H ;

IsrTemplate[13] := 08EH ; (* mov ax, ds *)

IsrTemplate[14] := 0D8H ;

IsrTemplate[15] := 08EH ; (* mov ax, es *)

IsrTemplate[16] := 0C0H ;

IsrTemplate[17] := 08EH ; (* mov ax, fs *)

IsrTemplate[18] := 0E0H ;

slide 9
gaius

Example of FLIH in GNU LuK

IsrTemplate[19] := 068H ; (* push interruptnumber *)

IsrTemplate[20] := 000H ; (* vector number to be overwritten.

IsrTemplate[21] := 000H ; (* this is the single parameter.

IsrTemplate[22] := 000H ; (* to function. *)

IsrTemplate[23] := 000H ;

IsrTemplate[24] := 0B8H ; (* movl function, %eax *)

IsrTemplate[25] := 000H ; (* function address to be overwritten *)

IsrTemplate[26] := 000H ;

IsrTemplate[27] := 000H ;

IsrTemplate[28] := 000H ;

slide 10
gaius

Example of FLIH in GNU LuK

IsrTemplate[29] := 0FFH ; (* call %eax *)

IsrTemplate[30] := 0D0H ;

IsrTemplate[31] := 058H ; (* pop %eax // remove parameter *)

IsrTemplate[32] := 00FH ; (* pop %fs *)

IsrTemplate[33] := 0A1H ;

IsrTemplate[34] := 007H ; (* pop %es *)

IsrTemplate[35] := 01FH ; (* pop %ds *)

IsrTemplate[36] := 05AH ; (* pop %dx *)

IsrTemplate[37] := 059H ; (* pop %cx *)

IsrTemplate[38] := 058H ; (* pop %ax *)

IsrTemplate[39] := 0CFH ; (* iret *)

slide 11
gaius

Example of FLIH in GNU LuK

GNU LuK uses a routineClaimIsr which will copy
theIsrTemplate into the correct interrupt vector
and then overwrite the vector number and function
address in the template

slide 12
gaius

Context switching

the scheduler runs inside the kernel and it decides
which process to run at any time

processes might be blocked waiting on a
semaphore or waiting for a device to respond
a process might need to be preemptively
interrupted by the scheduler if it were
implementing a round robin algorithm

the minimal primitives to manage context switching
in a microkernel or operating system were devised by
Wirth 1983 (Programming in Modula-2)

NEWPROCESS, TRANSFER andIOTRANSFER
(covered later on)

slide 13
gaius

A t iny example of two simple processes in
an operating system

void Process1 (void)

{

while (TRUE) {

WaitForACharacter();

PutCharacterIntoBuffer();

}

}

void Process2 (void)

{

while (TRUE) {

WaitForInterrupt();

ServiceDevice();

}

}

slide 14
gaius

Primiti ves to manage context switching

firstly let us look at a conventional program running
in memory (single program running on a computer)

i486

eax
ebx

ecx
esp

STACK

DATA

CODE

slide 15
gaius

Primiti ves to manage context switching

four main components
code
data
stack
processor registers (volatiles)

slide 16
gaius

Concurrency

suppose we want to run two programs concurrently?
we could have two programs in memory. (Tw o
stacks, code, data and two copies of a volatile
environment)
on a single processor computer we can achieve
apparent concurrency by running a fraction of
the first program and then run a fraction of the
second.
if we repeat this then apparent concurrency will
be achieved
in operating systems multiple concurrent
programs are often calledprocesses

slide 17
gaius

Concurrency

what technical problems need to be solved so achieve
apparent concurrency?

require a mechanism to switch from one process
to another

remember our computer has one processor but needs
to run multiple processes

the information about a process is contained
within the volatiles (or simply: processor
registers)

slide 18
gaius

Implementing concurrency

we can switch from one process 1 to process 2 by:
copying the current volatiles from the processor
into an area of memory dedicated to process 1
now copying some new volatiles from memory
dedicated to process 2 into the processor
registers

Volatiles

Volatiles

Processor

Process 2

Process 1

STACK

DATA

CODE

CODE

DATA

STACK

i486

eax
ebx

ecx
esp

esp
ecx

ebx
eax

i486

i486

eax
ebx

ecx
esp

slide 19
gaius

Implementing concurrency

this operation is call a context switch (as the
processors context is switched from process 1 to
process 2)

by context switching we have a completely new
set of register values inside the processor
so on the i486 we would changeall the registers.
Some of which include:EAX, EBX, ECX,
EDX, ESP andflags
note that by changing theESP register (stack
pointer) we have effectively changed stack

slide 20
gaius

Context switching primiti ves in GNU
LuK

the previous description of context switching is very
low lev el

in a high level language it is desirable to avoid the
assembler language details as far as possible

NEWPROCESS

TRANSFER

IOTRANSFER

it is possible to build a microkernel which
implements context switching and interrupt
dri ven devices using these primitives without
having to descend into assembly language

these are the primitives as defined by Wirth in
1983

slide 21
gaius

Context switching primiti ves in GNU
LuK

the primitivesNEWPROCESS, TRANSFER and
IOTRANSFER are concerned with copyingVolatiles
between process and processor

the procedureTRANSFER transfers control from one
process to another process

these primitives are low level primitives
they are normally wrapped up by higher level
functions:

for example:initProcess uses
NEWPROCESS which is similar to
new_thread in Python

slide 22
gaius

TRANSFER

the C definition is:

typedef void *PROCESS;

extern void SYSTEM_TRANSFER (PROCESS *p1, PROCESS p2);

and it performs the following action:

21

Volatiles

Process 2Process 1

i486

eax
ebx

ecx
esp

i486

eax
ebx

ecx
esp

Volatiles

esp
ecx

ebx
eax

i486

Processor

slide 23
gaius

IOTRANSFER

extern void SYSTEM_IOTRANSFER (PROCESS *first,

PROCESS *second,

unsigned int interruptNo);

the procedureIOTRANSFER allows process contexts
to be changed when an interrupt occurs

its function can be explained in two stages
firstly it transfers control from one process to
another process (in exactly the same way as
TRANSFER)
secondly when an interrupt occurs the processor
is context switched back to the original process

the implementation ofIOTRANSFER involves
interaction with theFLIH

slide 24
gaius

NEWPROCESS

extern void SYSTEM_NEWPROCESS (void (*p)(void), void *a,

unsigned long n,

PROCESS *new);

p is a pointer to a function.
this function will be turned into a process
a the start address of the new processes stack
n the size in bytes of the stack
new a variable of typePROCESS which will
contain the volatiles of the new process

slide 25
gaius

How is TRANSFER implemented?

or how do we implement a context switch?
first we push all registers onto the stack
second we need to save the current running
processes stack pointer into the running process
control block
third we need to restore the next process stack
pointer into the microprocessors stack pointer
fourth we pop all registers from the stack

slide 26
gaius

How is TRANSFER implemented?

void SYSTEM_TRANSFER (PROCESS *p1, PROCESS p2)

{

onOrOff toOldState;

toOldState = turnInterrupts(Off);

asm volatile ("pusha ; pushf"); /* push all registers */

/* remember p1 is the address of a PROCESS */

asm volatile ("movl %[p1], %%eax ; movl %%esp, (%%eax)"

:: [p1] "rm" (p1)); /* p1 := top of stack

asm volatile ("movl %[p2], %%eax ; movl %%eax, %%esp"

:: [p2] "rm" (p2)); /* top of stack := p2 */

asm volatile ("popf ; popa"); /* restore all registers */

toOldState := turnInterrupts(toOldState);

}

asm volatile

means inline an assembly instruction

slide 27
gaius

How is TRANSFER implemented?

the parameters("movl %[p1], %%eax ; movl
%%esp, (%%eax)" :: [p1] "rm" (p1));

means
movep1 into register%eax
move%esp into the address pointed to by%eax
p1 is a variable which may be in a register or in
memory
p1 is an input to the assembly instruction

slide 28
gaius

Conclusion

we have seen the structure of aFLIH

we have seen how three primitives can be used to
create processes, context switch between processes
and react to interrupts

we have seen how a context switch might be
implemented

