slide 2
slide 1 gaus
gaus

Interrupt handling and context switching

m these tw topics are separate and we will examine
them in turn

applications daemons

Device drvers

-

o Kernel
utilities

the user programs and hardware communicates with
the kernel through interrupts

slide 3 slide 4
gaus gaus

Four different kinds of interrupts First level interrupt handler

m device interrupt, such as a hardware tirfar m the kernel must detect which kind of interrupt has
example the 8253 ounter0 reachingo on an IBM- occurred and call the appropriate routine
PC this code is often termed tfiest level interrupt
handler

m user code issuing a software interrupt, often called a
system call

the pseudo code for tirIH follows:

m anillegd instruction (divide by zero, or an opcode
which the processor does not recognise)

® or a memory management fault interrupt (occurs
when code attempts to read from non existent
memory)

slide 5
gaus

First levd interrupt handler

save program registers and disable interrupts
k = get_interrupt_kind ();
if (k == source 1) service_sourcel ();

else if (k == source 2) service_source2 ();

else if (k == source 3) service_source3 ();

else if (k == source 4) service_sourced ();

else if (k == source 5) service_source5 ();
etc

restore program registers and enable interrupts
return

you may find the hardware on the microprocessor

performs the sa& and restore program registers and

disabling/enabling interrupts
possibly by one instruction

slide 7
gaus

Example of FLIH in GNU LuK

GNU LuK (Lean uKernel) is a very small
microkernel which allows prempg rocesses,
interrupt driven devices and semaphores

slide 6
gaus

First level interrupt handler

you might also find the hardware enables you to
determine the source of the interrupt easily
most microprocessors Vaan interrupt vector

table
m typically one vector per source is
implemented

equally howeve the code can be ugly as it depends

upon the hardware specifications

slide 8
gaus

Example of FLIH in GNU LuK

IsrTemplate[0] := OFCH ; (* cld (disable integ
IsrTemplate[1] := 050H ; (* push eax *)
IsrTemplate[2] := 051H ; (* push ecx *)
IsrTemplate[3] := 052H ; (* push edx ¥*)
IsrTemplate[4] := O0lEH ; (* push ds *)
IsrTemplate[5] := 006H ; (* push es *)
IsrTemplate[6] := OOFH ; (* push fs *)
IsrTemplate[7] := OAOH ;

IsrTemplate[8] := OB8H ; (* movl 0x00000010,
IsrTemplate[9] = 010H ;

IsrTemplate[10] := 000H ;

IsrTemplate[11] := 00OH ;

IsrTemplate[12] := 000H ;

IsrTemplate[13] := 08EH ; (* mov ax, ds *)
IsrTemplate[14] := OD8H ;

IsrTemplate[15] := 08EH ; (* mov ax, es *)
IsrTemplate[16] := OCOH ;

IsrTemplate[17] := 08EH ; (* mov ax, fs *)
IsrTemplate[18] := OEOH ;

rrupts

%eax *

slide 9
gaus

Example of FLIH in GNU LuK

IsrTemplate[19] := 068H ; (* push interruptny
IsrTemplate[20] := 000H ; (* vector number to
IsrTemplate[21] := 000H ; (* this is the singl
IsrTemplate[22] := 000H ; (* to function. *)
IsrTemplate[23] := 000H ;
IsrTemplate[24] = 0B8H ; (* movl function, %€
IsrTemplate[25] := 000H ; (* function address
IsrTemplate[26] := 000H ;
IsrTemplate[27] = 000H ;
IsrTemplate[28] := 000H ;

slide 11

gaus

Example of FLIH in GNU LuK

GNU LuK uses a routinelaimIsr which will copy
theIsrTemplate into the correct interrupt vector
and then werwrite the vector number and function
address in the template

mber *
be ove

e para

ax *)
to be

slide 10
gaus

Example of FLIH in GNU LuK

IsrTemplate[29] = OFFH ; (* call S%eax *)
IsrTemplate[30] = ODOH ;

IsrTemplate([31] := 058H ; (* pop %eax // remove p
IsrTemplate[32] = 00FH ; (* pop %fs *)
IsrTemplate[33] = OAlH ;

IsrTemplate[34] = 007H ; (* pop %es *)
IsrTemplate[35] := O0lFH ; (* pop %ds *)
IsrTemplate[36] := 05AH ; (* pop %dx *)
IsrTemplate[37] = 059H ; (* pop %cx *)
IsrTemplate[38] = 058H ; (* pop %ax *)
IsrTemplate[39] := OCFH ; (* iret *)

slide 12
gaus

Context switching

the scheduler runs inside the kernel and it decides
which process to run atwatime
processes might be blocked waiting on a
semaphore or waiting for a device to respond
a process might need to be preenmgi
interrupted by the scheduler if it were
implementing a round robin algorithm

the minimal primites to manage context switching
in a microkernel or operating system were devised by
Wirth 1983 (Programming in Modula-2)
NEWPROCESS, TRANSFER andIOTRANSFER
(covered later on)

slide 13 slide 14
gaus gaus

A tiny example of two Smple processes i Primiti ves to manage context switchin
an operating system

m firstly let us look at a carentional program running

B [void Processi (void) in memory (single program running on a computer)
{
while (TRUE) {
WaitForACharacter () ;
PutCharacterIntoBuffer(); CODE
}
} [|
486
void Process2 (void) DATA eax ecx
{ ebx esp

while (TRUE) { T T
WaitForInterrupt () ;

ServiceDevice () ;
) STACK

slide 15 slide 16
gaus gaus

Concurrency,

m four main components E suppose we want to rundwprograms concurrently?
code we could hge wo programs in memory(Two
data stacks, code, data andawopies of a volatile
stack environment)
processor registers (volatiles) on a single processor computer we can aehie

apparent concurrepdy running a fraction of
the first program and then run a fraction of the
second.

if we repeat this then apparent concuryendl

be achiged

in operating systems multiple concurrent
programs are often callguocesses

slide 17 slide 18
gaus gaus

Concurrency Implementing concurrency

m what technical problems need to be solved so eehie m we can switch from one process 1 to process 2 by:
apparent concurrency? copying the current volatiles from the processor
require a mechanism to switch from one process into an area of memory dedicated to process 1
to another now copying some ne volatiles from memory
dedicated to process 2 into the processor
registers

m remember our computer has one processor but needs
to run multiple processes [T 1

the information about a process is contained
\olatiles

within the volatiles (or simply: processor

) ! 1486 !
reglsters) i eaxecx ;l

ebx esp

i v
STACK ! Processor

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, [
486

eax ecx
ebx esp

[
A

\olatiles

DATA 486
eax ecx
STACK ebx esp

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

slide 19 slide 20
gaus gaus

Context switching primitives in GNU

LuK

m this operation is call a context switch (as the
processors context is switched from process 1 to m the previous description of context switching is very
process 2) low levd

by context switching we ha a ompletely new
set of register values inside the processor

so on the i486 we would changk the registers.
Some of which includeeax, EBX, ECX,

m in a high leel language it is desirable todd the
assembler language details as far as possible

. NEWPROCESS
EDX, hEsi anh flégs - _ . TRANSFER
note that by changing thesp register (stac TOTRANSFER

pointer) we hee dfectively changed stack

m itis possible to build a microkernel which
implements context switching and interrupt
driven devices using these primities without
having to descend into assembly language

these are the primites as @fined by Wirth in
1983

slide 21

Context switching primitives in GNU
LuK

the primitves NEWPROCESS, TRANSFER and
IOTRANSFER are concerned with copyingplatiles
between process and processor

the procedur@RANSFER transfers control from one
process to another process

these primitves ae low level primitives
they are normally wrapped up by highewé
functions:
m for exampleinitProcess uses
NEWPROCESS Which is similar to
new_thread in Python

slide 23
gaus

IOTRANSFER

extern void SYSTEM_IOTRANSFER (PROCESS *first,
PROCESS *second,

the procedure OTRANSFER allows process contexts
to be changed when an interrupt occurs

its function can be explained indvetages
firstly it transfers control from one process to
another process (in exactly the same way as
TRANSFER)

secondly when an interrupt occurs the processor

is context switched back to the original process

the implementation af OTRANSFER involves
interaction with the'L.1H

unsigned int interruyptNo);

slide 22
gaus

TRANSFER

the C definition is:

typedef void *PROCESS;

extern void SYSTEM_TRANSFER

(PROCESS *pl, PROCESS p2);

and it performs the following action:

Processor
[
1486
eax ecx

ebx esp
T T

Process 1 Process 2

\olatiles Volatiles
486 1486
eax ecx eax ecx
ebx esp ebx esp

slide 24
gaus

NEWPROCESS

extern void SYSTEM_NEWPROCESS

(void (*p) (void), voi
unsigned long n,
PROCESS *new) ;

p is a pointer to a function.

this function will be turned into a process
a the start address of thewmerocesses stack

n the size in bytes of the

stack

new a\ariable of typeerRocESsS which will
contain the volatiles of the weprocess

d *a,

slide 25

How is TRANSFER implemented

or hav do we mplement a context switch?
first we push all registers onto the stack
second we need tovgathe current running

processes stack pointer into the running process

control block

third we need to restore the next process stack
pointer into the microprocessors stack pointer
fourth we pop all registers from the stack

slide 27

How is TRANSFER implemented

the parameters"movl %[pl], $%eax ; movl

%$%esp, (%%eax)" :: [pl] "rm" (pl));

means
movepl into registerseax
move $esp into the address pointed to bgax
pl is a variable which may be in a register or in
memory
plis an input to the assembly instruction

slide 26
gaus

How is TRANSFER implemented

void SYSTEM_TRANSFER (PROCESS *pl, PROCESS p2)
{
onOrOff toOldState;

toOldState = turnInterrupts (Off);
asm volatile ("pusha ; pushf"); /* push all rg
/* remember pl is the address of a PROCESS */
asm volatile ("movl $[pl], %$%eax ; movl %$%esp,

[p1] "rm" (pl)); /* pl := top ¢
asm volatile ("movl %[p2], %%eax ; movl %$%eax, $

[p2] "rm" (p2)); /* top of sta
asm volatile ("popf ; popa"); /* restore all
toOldState := turnInterrupts (toOldState);

asm volatile
means inline an assembly instruction

slide 28
gaus

Conclusio

we hare fen the structure ofELIH

we hare :en hav three primitves can be used to
create processes, context switch between proces
and react to interrupts

we hare en hav a context switch might be
implemented

gister

o°

%eax)
f stac
esp"

o

~
I
ko]

regis

Ses

