
slide 1
gaius

Taxonomy of client/server architectures

so far we have looked at a simple TCP server/client
and a simple UDP server/client

this week we will further classify these servers

first we will examine the pros and cons of the TCP
and UDP server/clients

slide 2
gaius

The pros/cons for a TCP client server

pro connection is reliable

pro reasonably efficient for sending medium/large
amounts of data

con requires packets to be sent (overhead) to setup
the connection and close the connection

con inefficient to send tiny amounts of data

slide 3
gaius

The pros/cons for a UDP client server

pro simpler than the TCP counterpart

pro very efficient for sending tiny amounts of data

pro no connection is created by UDP, hence less
overhead

con it uses the UDP transport thus data might be
scrambled or lost in transit

connectionless transport characteristics

con you have to manage the unreliable nature of the
connection yourself

examples NFS, VoIP

slide 4
gaius

Returning to the basic server algorithm
for TCP or UDP

conceptually each server follows a simple algorithm,
expressed in pseudo code:

it creates a socket

binds the socket to a well known port

loop

accept the next client

request from this port

serve this request

formulate a reply

send the reply to client

end



slide 5
gaius

Problems with the simple server?

unfortunately this is only good enough for simple
applications

consider a service requiring considerable time to
handle each request

example suppose a file transfer client server were
implemented like this!
one user requests a huge file
moments later another user might wish to
transfer a small file

slide 6
gaius

Problems with the simple server?

the second user has to wait a considerable time just to
transfer a small file

the second user isblocked until the first user has
finished with the server

thus servers are seldom built like this

slide 7
gaius

Taxonomy of client/server architecture

first on the list in our taxonomy of client servers is

iterative server (as we have just seen)
used to describe a server implementation that
processes one request at a time

slide 8
gaius

Taxonomy of client/server architecture

second on the list in our taxonomy of client servers is
a

concurrent server
used to describe a server that handles multiple
requests at a time

best viewed from the client perspective
the server appears to communicate with multiple
clients concurrently.

the term concurrent server refers to whether the
server handles multiple requests concurrently, not to
whether the underlying implementation uses multiple
concurrent processes



slide 9
gaius

Concurrent server pro/cons

concurrent servers are more difficult to design and
build

the resulting code is more complex
difficult to modify

most programmers choose concurrent server
implementations

slide 10
gaius

Iterative server pro/cons

cause unnecessary delays in distributed applications

may be a performance bottleneck that effects many
client applications

iterative server implementations, which are easier to
build and understand, may result in poor
performance because they make clients wait for
service. Whereas in contrast, concurrent server
implementations, which are more difficult to build,
yield better performance.

slide 11
gaius

Iterative server pro/cons

we can view these two categories across the
TCP/UDP division below:

concurrent concurrent

connectionless connection oriented(UDP)

(TCP)

(TCP)

iterative iterative

connection orientedconnectionless (UDP)

slide 12
gaius

Pseudo code for the iterative
connectionless server

create a socket and bind

to a well known address

for which a service is

being offered

loop

read next request from client

process the request

send reply back to client

end



slide 13
gaius

Pseudo code for the concurrent
connectionless server

create a socket and bind

to the well known address

for the service being offered

leave the socket unconnected

loop

call recvfrom to obtain the

next client request

if (fork() == 0) {

/* child process. */

process the request

form a reply and send

it to client

(use sendto)

exit (0)

}

/* only the parent gets here. */

end

slide 14
gaius

Pseudo code for a concurrent connection
oriented server

create a socket and bind

it to the well known address

for the service being offered

place socket into passive mode

making it ready for use by

the server

slide 15
gaius

Pseudo code for a concurrent connection
oriented server

loop

call accept to receive the

next request from a client

if (fork() == 0) {

/* must be the child */

repeat

read request from client

process the request

form a reply and send

it to client

until client wishes to quit

close connection

exit (0)

}

/* only the parent gets here. */

end

slide 16
gaius

When to use each server type

iterative vs concurrent
iterative server is easier to design, implement and
maintain
concurrent server can provide a quicker response
to requests

use iterative implementation if
the time toprocess the requestis small



slide 17
gaius

When to use each server type

connection oriented vs connectionless
connection oriented access means using TCP

implies reliable delivery
because connectionless transport means using
UDP

it implies unreliable delivery

slide 18
gaius

Conclusion

only use connectionless transport if the application
protocol handles reliability

or the local area network exhibits:
low packet loss
no packet reordering (very few do)

use connection oriented transport whenever
a wide area network separates client and server

never move a connectionless client and server to a
wide area network

without checking to see if the application
protocol handles the reliability problems


