
slide 1
gaius

Overview

during this tutorial we will examine how to use git
from the command line

we will also browse some of the files in the
linux kernel
and gcc

finally we will explore a graphical visualisation of git
activity

firstly you will need to use GNU/Linux for this
tutorial

slide 2
gaius

Boot your computer into GNU/Linux

if you are using Windows, reboot your computer
keep watching the screen and quickly choose
Linux before it boots into the other default
operating system

log in to debian or mint GNU/Linux and open up a
command terminal

slide 3
gaius

Introduction to git on the command line

git can be run from a gui, but here we are going to
use it from the command line to expose what a git gui
would be performing on our behalf

git is a is a distributed revision control system

useful for managing text based changes across
multiple files and directories

distributed
allows files to be removed, moved
user can commit changes and retrieve previous
changes

slide 4
gaius

Introduction to git on the command line

very useful for programming or managing documents
in groff or latex format

not so useful foropenoffice documents

but it could still be used
just not as efficient as using text

slide 5
gaius

Server side: setting up your own git
server

usemcgreg.comp.glam.ac.uk

so from your terminal type:

$ hostname

it should mention the room you are in

now you can log intomcgreg by typing

$ ssh mcgreg.comp.glam.ac.uk

you will be prompted for a password (you should
enter your linux password)

slide 6
gaius

Server side: setting up your own git
server

$ cd

$ mkdir myrepo.git

$ cd myrepo.git

$ git --bare init

the above only needs to be done once

slide 7
gaius

Server side: setting up your own git
server

you can log offmcgreg
do this by typingexit from the command line

now check you are on your local machine by using
hostname again

slide 8
gaius

Client side

firstly we need to define where the git repro lives

$ mkdir -p $HOME/Sandpit/first

$ cd $HOME/Sandpit/first

$ git init

$ git remote add origin username@mcgreg.comp.glam.ac.uk:/home/username/myrepo.git

definesorigin to the mcgreg url

sets the master branch to the origin
for personal git repros you will rarely need to
bother with branches
thus themaster branch can be ignored here

slide 9
gaius

Client side

$ mkdir -p $HOME/Sandpit/firstcopy

$ cd $HOME/Sandpit/firstcopy

$ git init

$ git add

$ touch README

$ git commit -m "My first file committed"

$ git push

slide 10
gaius

Client side copy

to take another copy of the files from the repository
you can

$ mkdir -p $HOME/Sandpit/secondcopy

$ cd $HOME/Sandpit/secondcopy

$ git init

$ git clone username@mcgreg.comp.glam.ac.uk:/home/username/myrepo.git

now you could make some modifications and then

$ cd Sandpit/secondcopy

$ emacs README

$ git commit -m "My second commit"

$ git push

which uploads changes back to the master on
mcgreg

slide 11
gaius

What changes have I made?

can use

$ git diff

to see the differences between your local copy and
the repository

slide 12
gaius

What changes have I made?

can use:

$ git log

to see the entire history of all changes, or:

$ git log version.c

to see the history of all changes to the file
version.c

slide 13
gaius

Tagging in git

you can tag a release or stage of development by:

$ git tag version1.0 -m "version 1.0"

to see all available tags type:

$ git tag

slide 14
gaius

To go back in time to a previous version

$ mkdir $HOME/Sandpit/thirdcopy

$ cd $HOME/Sandpit/thirdcopy

$ git init

$ git clone username@mcgreg.comp.glam.ac.uk:/home/username/myrepo.git

$ git checkout version1.0

slide 15
gaius

To go back in time to a previous version

or you could go back to another commit time (as seen
by thegit log)

$ mkdir $HOME/Sandpit/fourthcopy

$ cd $HOME/Sandpit/fourthcopy

$ git init

$ git clone username@mcgreg.comp.glam.ac.uk:/home/username/myrepo.git

$ cd myrepo.git

$ git log

etc etc

ec1c3b3fa9844e3304fe24eb54e0529e356883f7

etc etc

$ git checkout ec1c3b3fa9844e3304fe24eb54e0529e356883f7

Note: checking out ’ec1c3b3fa9844e3304fe24eb54e0529e356883f7’.

You are in ’detached HEAD’ state. You can look around, make experimental

changes and commit them, and you can discard any commits you make in this

state without impacting any branches by performing another checkout.

slide 16
gaius

gource

in /usr/local/src/projects there are copies
of the linux kernel source tree and the gcc source tree

firstly see if you can find theChangeLog files in
these projects

slide 17
gaius

gource

read the manual page togource

try running the program:

$ cd /usr/local/src/projects/gcc

$ gource -s 0.25 -highlight-all-users

press escape to quit

now try running it on the kernel source

$ cd /usr/local/src/projects/linux-stable

$ gource -s 0.25 -highlight-all-users

press escape to quit

