
slide 1
gaius

Interprocess communcation

in Operating systems we find there are a number of
mechanisms used for interprocess communication
(IPC)

the IPC mechanisms can be divided into two groups,
those which work well using shared memory and
those which work with non shared memory

some common methods of IPC are: sockets,
semaphores and mailboxes

sockets and mailboxes are normally used by non
shared memory programs

ie client and server on different machines

slide 2
gaius

Interprocess communication in shared
memory systems

semaphores are more appropriate for multiple
processes sharing some common memory

we will be covering a semaphores and message
passing after networking with sockets

message passing
can be used in shared memory systems

this week we will look at Semaphores

slide 3
gaius

Semaphores: shared memory
interprocess communication

processes within an operating system do not act in
isolation

on the one hand they co-operate to implement an
application
on the other hand they compete for resources,
processor time, device access etc

these two elements of co-operation and competition
imply some form of communication between the
processes

slide 4
gaius

Semaphores: shared memory
interprocess communication

in effect there are two categories for interprocess
communication

mutual exclusion
synchronisation

mutual exclusion
some resources in an operating system are non
sharable, maybe access to the sound card or
access to the GPU
access needs to be granted to one process at a
time

synchronisation
processes run asynchroneously relative to each
other
sometimes there will be points beyond which a
process cannot proceed until another process has
completed some activity

slide 5
gaius

Mutual exclusion

require a mechanism to ensure that only one process
can manipulate data at any one time

mutual exclusion

the concepts we discuss today arevery important for
operating systems

a fundamental building block

slide 6
gaius

How do we implement mutual exclusion?

simplest mechanism
mask processor interrupts off
processor cannot respond to any interrupt and
therefore will execute code in sequence until it
masks interrupt back on again
sometimes these critical sections of code are
calledatomic
what are this disadvantages with this approach?
what are this advantages with this approach?

slide 7
gaius

How do we implement mutual exclusion?

another mechanism issemaphores
essentially a binarysemaphore is a token which
can be grabbed byonly one process at a time
a token is taken at the entry to the critical section
and given back at the end of the critical section
a process can only enter once it has the token

slide 8
gaius

Semaphores

the most important single contribution towards
interprocess communication was the introduction of
semaphores by E.W. Dijkstra in 1965

a semaphore is a data type and the primitive
operators arewait andsignal

these are the classic operators translated from Dutch
words

slide 9
gaius

Semaphores

consider the following two processes:

/* Shared semaphore */

Semaphore token; /* initial value 1 */

void ProcessA () void ProcessB ()

{ {

while (TRUE) { while (TRUE) {

... ...

Wait(Token) Wait(Token)

/* critical /* critical

region */ region */

Signal(Token) Signal(Token)

... ...

} }

} }

slide 10
gaius

Semaphores

SEMAPHORE token

Wait gets the token
Signal returns the token

slide 11
gaius

Semaphores

note thatWait andSignal are bothatomic

they are implemented in software with processor
interrupts masked off

this allows us to build critical regions which can
execute with processor interrupts on

this is overall efficient as we only have to mask
processor interrupts off during the execution ofWait
andSignal

this time should be short compared with the time
to execute the critical region

slide 12
gaius

Semaphores

we can expressWait andSignal in pseudo code:

void Wait (s)

{

when s>0

s--;

}

void Signal (s)

{

s++;

}

slide 13
gaius

Semaphores

in our previous example the initial value of s would
be 1

note that this is pseudo code
note the use ofwhen

slide 14
gaius

Semaphores

we have now seen how a critical section can be
achieved by using semaphore primitivesWait and
Signal

for example access to the shared buffer will be a
critical section

slide 15
gaius

Starting to implement a shared buffer
using semaphores

void put (char ch) char get (void)

{ {

Wait(Mutex) Wait(Mutex)

/* safe to alter */ /* safe to alter */

/* buffer */ /* buffer */

place ch into buf remove ch from buf

Signal(Mutex) Signal(Mutex)

return ch;

} }

char buffer[Max]; /* global data */

SEMAPHORE Mutex; /* global data */

we will return to this code next week

slide 16
gaius

Implementing synchonisation with a
Semaphore

void ProcessA () void ProcessB ()

{ {

while (TRUE) { while (TRUE) {

... ...

Wait(sync) /* point B */

/* process B reached Signal(sync)

point B. */ ...

... }

} }

}

slide 17
gaius

Python Semaphores and Threads

in python you can create threads and create
semaphores

there are a number of Python primatives which
operate on semaphores but we will concentrate
on those which map ontoWait andSignal

slide 18
gaius

Python Semaphores and Threads

semaphores can be created and used by:

from thread import start_new

from threading import Semaphore

Mutex = Semaphore(value=1)

Mutex.acquire() # Wait

Mutex.release() # Signal

a thread can be created by usingstart_new

slide 19
gaius

Example in Python of two threads
synchronising

simplesync.py

#!/usr/bin/env python

import sys, time

from thread import start_new

from threading import Semaphore

sync = Semaphore(value=0)

def processA (p, count):

global sync

print "processA", p, "comes to life"

while True:

time.sleep (5) # do some work

sync.release() # indicate we have finished our work

slide 20
gaius

Example in Python of two threads
synchronising

simplesync.py

def processB (p, count):

global sync

print "processB", p, "comes to life"

while True:

print "waiting for process A to complete its work"

start_time = time.time()

sync.acquire()

end_time = time.time()

print "processB", p, "spent", end_time - start_time, "seconds waiting to for process A to finish"

def main ():

start_new(processA, (1, 0))

processB (2, 0)

main ()

slide 21
gaius

Example in Python of two threads
implementing mutual exclusion

simplemutex.py

#!/usr/bin/env python

import sys, time

from thread import start_new

from threading import Semaphore

mutex = Semaphore(value=1)

n = 0 # global variable which will be incremented and

decremented inside the critical region

slide 22
gaius

Example in Python of two threads
implementing mutual exclusion

simplemutex.py

def process (p, count):

global mutex, n

print "process", p, "comes to life"

while True:

start_time = time.time()

print "process", p, "waiting to enter"

mutex.acquire()

end_time = time.time()

print "process", p, "spent", end_time - start_time, "seconds waiting to enter the critical region"

critical region

n += 1

if n != 1:

print "something has gone very wrong!"

sys.exit (1)

time.sleep (5)

n -= 1

mutex.release()

print "process", p, "finished critical region"

slide 23
gaius

Example in Python of two threads
implementing mutual exclusion

simplemutex.py

def main ():

for i in range (3):

start_new(process, (i, 0))

process (4, 0)

main ()

